03.04.2006

Stärkste Magnetfelder

Bei der Kollision von Neutronensternen entstehen die stärksten Magnetfelder des Universums.


Stärkste Magnetfelder

Bei der Kollision von Neutronensternen entstehen die stärksten Magnetfelder des Universums.

Stephan Rosswog, Professor für Astrophysik an der International University Bremen (IUB), und Daniel Price, Postdoc an der University of Exeter, konnten mit Hilfe von Supercomputer-Simulationen zeigen, dass in Kollisionen von Neutronensternen Magnetfelder auftreten, die mehr als eine Billiarde (10 15) mal stärker sind, als das Erdmagnetfeld. Die Simulationsergebnisse sind in der aktuellen Online-Express-Ausgabe von Science veröffentlicht.

Neutronensternen sind kosmische Objekte, die aus Supernova-Explosionen entstehen und eine extrem hohe Dichte besitzen: In der Masse der Sonne vergleichbar haben sie einem Durchmesser um die 10 km, sind also um das 70.000-fache kleiner als die Sonne. Es gibt Doppelsternsysteme, die aus zwei solchen Neutronensternen bestehen. Diese umkreisen sich und bewegen sich dabei langsam spiralförmig aufeinander zu, bis sie miteinander kollidieren. Es wird vermutet, dass derartige Kollisionen Auslöser von hochenergetischen Blitzen, den so genannten Gamma-Ray-Bursts sind, den stärksten kosmischen Explosionen seit dem Urknall, welche in einer Sekunde mehr Energie frei setzen, als unsere Sonne dies in der gesamten Existenzzeit des Universums tun würde. Jüngste Beobachtungen von „Nachleuchten“ solcher Explosionen untermauern diese These; die physikalischen Prozesse in diesen Explosionen sind jedoch noch weitgehend unverstanden.

Abb.: Simulationssequenz der ersten 11 Millisekunden einer Kollision von zwei Neutronensternen; die Farben sind ein Maßstab für die Stärke der Magnetfelder, wobei blau die geringste Stärke (10 9 Gauss) und gelb die größte Stärke (10 15 Gauss) anzeigt.

Die Simulationen von Stephan Rosswog und Daniel Price sind ein erster Schritt zur Aufklärung der komplexen Physik von Gamma-Ray-Bursts. Unter Berücksichtigung verschiedenster physikalischer Disziplinen, von Gravitation über Kernphysik bis zur Hyrdodynamik, führten die beiden Astrophysiker Berechnungen zum zeitlichen Verlauf der vermutlichen Explosionsauslöser, den Neutronensternkollisionen, durch, die enorme Anforderungen an Rechengeschwindigkeit und Speicherplatz des verwendeten Hochleistungsrechners stellten. Sie konnten zeigen, dass die ursprünglichen Magnetfelder der Neutronensterne in der ersten Millisekunde der Kollision auf mehr als 10 15 Gauss verstärkt werden.

„Das sind unglaubliche Größenordnungen“, kommentierte Stephan Rosswog die Simulationsergebnisse. „Magnetfelder, die wir aus dem Alltag kennen, etwa ein Magnet, den man an seinem Kühlschrank hat, betragen nur etwa 100 Gauss.“ Die beiden Wissenschaftler hatten ihre Simulationen auf dem Supercomputer der IUB durchgeführt, der vor knapp einem Jahr in Betrieb genommen wurde. Das System gehört mit 24 Prozessoren, die Zugriff auf einen gemeinsamen Hauptspeicher haben, zu den leistungsfähigsten seiner Art und erlaubt eine hocheffiziente Parallelisierung von Rechenvorgängen. „Wir mussten lange suchen, um eine Methode zu finden, die entsprechenden Gleichungen auf einem Computer zu lösen. Dass wir derartige Simulationen durchführen können, ist erst seit kurzem durch die Rechenkapazitäten von Supercomputern möglich. Wir saßen einige Wochen praktisch Tag und Nacht am Computer, bis wir endlich einen Lösungsalgorithmus gefunden hatten. Die tatsächlichen Rechnungen liefen dann noch einmal fast einen Monat“, sagte Daniel Price über die komplexen Berechnungen.

Die beiden Astrophysiker werden ihre Ergebnisse, neben der Veröffentlichung in Science, auch am 5. April auf dem diesjährigen National Astronomy Meeting (NAM 2006) an der University of Leicester und am 7. April auf der Ringberg-Konferenz zu Nuklearer Astrophysik vorstellen.

Quelle: IUB

Weitere Infos:

Jobbörse

Physik Jobbörse in Freiburg und Berlin
Eine Kooperation von Wiley und der DPG

Physik Jobbörse in Freiburg und Berlin

Freiburg, 13.-14.03.2024, Berlin, 19.-21.03.2024
Die Präsentationen dauern jeweils eine Stunde, am Ende der Veranstaltung ist Zeit für Q&A eingeplant.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Photo
14.09.2023 • NachrichtForschung

Knick im Jet

Verbogener Jet aus supermassereichem schwarzem Loch vermutlich auf Präzession der Jet-Quelle zurückzuführen.

Themen