Sulfat-Aerosole kühlen weniger als gedacht
Die Lebensdauer wolkenbildender Sulfat-Partikel in der Luft ist geringer als angenommen. Ursache ist eine bisher unbeachtete Oxidation von Schwefeldioxid.
Schwefeldioxid ist als Gegenspieler der Treibhausgase offenbar weniger effektiv als bisher vermutet. Aus ihm entstehen in der Luft Sulfat-Aerosolpartikel, die das Sonnenlicht reflektieren und als Wolkenkondensationskeime die chemischen Vorgänge in Wolken beeinflussen. Sulfat-Aerosolpartikel helfen also, die Erde zu kühlen. Sie sind deshalb ein wesentlicher Bestandteil vieler Klimamodelle. Wie ein Team um Forscher des Max-Planck-Instituts für Chemie in Mainz nun jedoch herausfand, ist es wahrscheinlich, dass die meisten Modelle bei ihren Vorhersagen den Kühlungseffekt dieser Partikel überschätzt haben. Grund ist ein bisher weitgehend unberücksichtigter Reaktionsweg in den Wolken, den Mineralstaub katalysiert und der die Lebensdauer von Sulfat-Aerosolpartikeln und deren Fähigkeit, Sonnenlicht zu reflektieren, stark beeinflusst.
Abb.: HCCT 2010 (Hill Cap Cloud Thuringia 2010) auf dem Schmücke Berg im Thüringer Wald ermöglicht eine bodengestützte integrierte Untersuchung von Aerosolen und Wolken. (Abb.: S. Mertes/TROPOS)
Als Kondensationskeime sind Aerosolpartikel ein wichtiger Ausgangspunkt für die Bildung von Wolken. Luftfeuchtigkeit lagert sich an ihnen an, und es entstehen kleine Tropfen, die schließlich zu Wolken werden. In den Wolken selbst jedoch verändert sich die chemische Zusammensetzung der Aerosolpartikel.
Um herauszufinden, was sich dort genau abspielt und warum, untersuchten Eliza Harris und Bärbel Sinha vom Max-Planck-Institut für Chemie gemeinsam mit weiteren Wissenschaftlern aus Mainz und anderer Institute verschiedene Luftmassen. Das Besondere: Sie beobachteten eine Wolke, die sich an einem Berg aufstaute, während sie sich bildete. Auf diese Weise verfolgten sie die Veränderung der Aerosolbestandteile im Laufe der Wolkenenstehehung.
Harris und Sinha richteten dabei ihr Hauptaugenmerk auf die Analyse von Schwefelverbindungen. Deren Zusammensetzung untersuchten sie anhand von Luftproben, die zu unterschiedlichen Zeitpunkten genommen wurden: Vor dem Eintauchen in die Wolke, während des Aufenthalts in der Wolke und nachdem sie die Wolke wieder verlassen hatten.
Die Schwefelverbindungen in den Proben unterschieden sich in der Verteilung der Schwefelisotope. Mithilfe der NanoSIMS-Ionensonde, eines besonders hochempfindlichen Massenspektrometers, konnte das Forscherteam sogar, Rückschlüsse auf die chemischen Abläufe ziehen. „Die relativen Reaktionsraten von Isotopen sind wie Fingerabdrücke, die verraten, auf welchem Weg das Sulfat aus dem Schwefeldioxid entstanden ist“, erklärt Eliza Harris ihre Untersuchungsmethode, die Teil ihrer Doktorarbeit in der Forschungsgruppe von Peter Hoppe am Max-Planck-Institut für Chemie war.
Harris‘ Studie offenbart, dass der wichtigste Weg der Sulfatbildung in den meisten Klimamodellen bisher offenbar übersehen wurde. Ihren Messungen zufolge entstehen Sulfate in Wolken am häufigsten über die Oxidation von Schwefeldioxid (SO2) mit Sauerstoff (O2). Diese Reaktion wird durch Übergangsmetallionen, kurz TMI für „transition metal ion“, wie Eisen, Mangan, Titan oder Chrom, katalysiert. Zudem traten die Sulfate meistens in Wolkentropfen auf, die sich auf großen Mineralstaubpartikeln, den wichtigsten Lieferanten der Übergangsmetallionen, gebildet hatten. Sehr viel seltener führte die Spur zur Oxidation von Schwefeldioxid mit Wasserstoffperoxid (H2O2) und Ozon (O3).
„Als meine Kollegen und ich mit diesem Ergebnis auf die grundlegenden Annahmen der Klimamodelle blickten, waren wir sehr erstaunt. Denn nur eines von zwölf Modellen berücksichtigt die Rolle der Übergangsmetallionen bei der Sulfatbildung“, so die Wissenschaftlerin, die mittlerweile am Massachusetts Institute of Technology (MIT) in den USA arbeitet. Stattdessen verwendeten die meisten Modelle den alternativen Fall der Schwefeldioxidoxidation durch Wasserstoffperoxid (H2O2), Ozon (O3) und das Hydroxyl-Radikal (OH).
Da Sulfat, das katalytisch durch Übergangsmetallionen gebildet wird, an der Oberfläche relativ großer Mineralstaubpartikel entsteht, sind diese größer als diejenigen, die aus der Reaktion mit Wasserstoffperoxid entstehen. Aufgrund ihrer Größe fallen sie – bedingt durch die Schwerkraft – schneller wieder nach unten. Somit könnte der Zeitraum, in dem sie sich kühlend auf das Klima auswirken können, kürzer sein als bisher vielfach angenommen wurde.
Eliza Harris geht deshalb davon aus, dass die bisherigen Prognosen die kühlenden Eigenschaften der Sulfat-Aerosole auf das Klima überschätzen. Bisher lässt sich jedoch noch nicht quantifizieren, welche Auswirkungen Harris‘ Entdeckung auf die Klimaprognosen haben wird. Zukünftige Modelle sollten die TMI-Katalyse allerdings als wichtigen Reaktionsweg der SO2-Oxidation berücksichtigen, so die Forscherin. Zwar schätzt sie die Auswirkungen auf die Klimaprognosen für europäische Regionen als eher gering ein, da hier nur wenig Mineralstaub in der Luft vorliege und der Schwefeldioxidausstoß kontinuierlich auf dem Rückzug sei. „In Indien und China jedoch, wo mit steigenden SO2-Emissionen in der Zukunft zu rechnen ist und zudem erheblich mehr Staub in der Luft, könnte sich ein deutlicherer Effekt abzeichnen“, vermutet sie. Weitere Studien werden es zeigen.
MPG / PH