Supraleiter unter Druck
Quantenmechanische Anregungen der Elektronen in Strontiumruthanat erhöhen Supraleitung.
Der Supraleiter Strontiumruthanat stellt die Wissenschaft vor viele Fragen. Forschende am Karlsruher Institut für Technologie KIT und am Max-Planck-Institut für Chemische Physik fester Stoffe (MPI CPfS) in Dresden haben nun festgestellt, dass mechanischer Druck die Supraleitung erhöht und zugleich die Verformung des Materials erleichtert. Dies führen sie auf quantenmechanische Anregungen der Elektronen zurück. Ihre Arbeit trägt zum Verständnis des Wechselspiels von elastischen und elektronischen Eigenschaften bei.
Bei Strontiumruthanat (Sr2RuO4) hat die Wissenschaft noch nicht verstanden, wie es zur Supraleitung kommt. „Die konventionelle Theorie lässt sich auf Strontiumruthanat nicht anwenden. Doch die Quantenmechanik bringt uns weiter, denn mit ihr lassen sich nicht nur die Eigenschaften einzelner Atome und Moleküle, sondern auch die kollektiven Eigenschaften von Vielteilchensystemen beschreiben“, sagt Jörg Schmalian, Leiter des Instituts für Theorie der Kondensierten Materie (TKM) des KIT sowie Leiter der Abteilung Theorie der Quantenmaterialien am Institut für Quantenmaterialien und Technologien (IQMT) des KIT.
Forschende an mehreren Instituten des KIT und am MPI CPfS hatten bereits 2022 demonstriert, wie sich durch mechanisches Drücken entlang einer bestimmten Richtung die Sprungtemperatur von Strontiumruthanat deutlich erhöhen lässt und wie dabei das Anregungsverhalten der Elektronen verändert wird. Zusammen mit internationalen Partnern stellten die Forschenden aus Karlsruhe und Dresden nun fest, dass genau dieser Druck, der die Supraleitung stark erhöht, das Material mechanisch wesentlich weicher macht, sodass Verformungen erleichtert werden. Dies führen die Forschenden auf eine quantenmechanische Resonanz der Schwingungen der Elektronen zurück.
Vor rund sechzig Jahren sagte der sowjetische Physiker Ilja M. Lifschitz ein mechanisches Aufweichen vorher, das heute als Lifschitz-Übergang bekannt ist. „Der Effekt, den wir nun identifiziert haben, ist jedoch mehr als tausendmal größer und lässt sich klar mit der Verstärkung von Supraleitung in Verbindung bringen. Das ist verblüffend, weil weniger als ein Prozent der insgesamt im Material existierenden Elektronen eine Reduktion der elastischen Konstanten um zwanzig Prozent erzwingen“, erläutert Schmalian.
Um die Untersuchung des Wechselspiels von elastischen und elektronischen Eigenschaften geht es auch im von der Deutschen Forschungsgemeinschaft (DFG) geförderten Transregio ELASTO-Q-MAT, in dem das MPI CPfS und das KIT stark vertreten sind. Nun entwickelten die Forschenden ein Modell des Effekts, bei dem einige wenige der stromführenden Elektronen alle anderen beherrschen und das Material viel weicher machen können. Die Messungen dazu liefen am MPI CPfS in Dresden. „Ilja M. Lifschiz machte in seiner Theorie keinen Fehler“, betont Schmalian. „Unsere Studie bietet jedoch eine neue Perspektive und eröffnet die Möglichkeit, in Zukunft starke Quantenfluktuationen im Labor zu manipulieren und Materialien für einen gegebenen physikalischen Effekt zu optimieren.“
KIT / JOL