Suprasolide Quantenmaterie in zwei Dimensionen
Experiment bietet vielfältige Möglichkeiten zur Untersuchung des ausgewöhnlichen Materiezustands.
Quantengase eignen sich sehr gut, um Eigenschaften der Materie im Detail zu untersuchen. Wissenschaftler können heute im Labor einzelne Teilchen in extrem stark gekühlten Gaswolken exakt kontrollieren und auf diese Weise Effekte sichtbar machen, die in der Alltagswelt nicht beobachtet werden können. So sind die einzelnen Atome in einem Bose-Einstein-Kondensat vollständig delokalisiert. Das bedeutet, dass das gleiche Atom zu jedem Zeitpunkt an jedem Punkt innerhalb des Kondensats vorhanden ist. Vor zwei Jahren ist es der Forschungsgruppe um Francesca Ferlaino von der Uni Innsbruck gelungen, in ultrakalten Quantengasen aus magnetischen Atomen erstmals suprasolide Zustände zu erzeugen.
Die magnetische Wechselwirkung bringt die Atome dazu, sich selbst zu Tröpfchen zu organisieren und in einem regelmäßigen Muster anzuordnen. „Normalerweise würde man denken, dass jedes Atom in einem bestimmten Tröpfchen zu finden ist, ohne Möglichkeit den Ort zu tauschen“, sagt Team-Mitglied Matthew Norcia. „Im suprasoliden Zustand ist jedoch jedes Teilchen über alle Tröpfchen hinweg delokalisiert, existiert also gleichzeitig in jedem Tröpfchen. Im Grunde hat man also ein System mit einer Reihe von Regionen hoher Dichte, die Tröpfchen, die sich alle die gleichen delokalisierten Atome teilen.“ Diese bizarre Formation ermöglicht Effekte wie das reibungsfreie Strömen trotz der Existenz einer räumlichen Ordnung, also Suprafluidität.
Bisher wurden suprasolide Zustände in Quantengasen immer nur als Aneinanderreihung von Tröpfchen entlang einer Dimension beobachtet. „In Kooperation mit den beiden Theoretikern Luis Santos von der Uni Hannover und Russell Bisset in Innsbruck haben wir nun dieses Phänomen auf zwei Dimensionen erweitert, wodurch Systeme mit zwei oder mehr Reihen von Tröpfchen entstehen“, erläutert Norcia. Das ist nicht nur ein quantitativer Unterschied, sondern erweitert auch die Forschungsperspektiven entscheidend.
In einem zweidimensionalen suprasoliden System kann man zum Beispiel untersuchen, wie sich in der Öffnung zwischen mehrerer beieinanderliegenden Tröpfchen Wirbel bilden. „Diese in der Theorie beschriebenen Wirbel sind bisher noch nicht nachgewiesen worden, stellen aber eine wichtige Folge von Suprafluidität dar“, blickt Ferlaino bereits in die Zukunft. Das Experiment schafft neue Möglichkeiten, die grundlegende Physik dieses faszinierenden Materiezustands weiter zu untersuchen.
U. Innsbruck / RK