18.03.2015

Transparent für Infrarot

Neue Solarzellen nutzen mehr Sonnenlicht.

Wissenschaftler der Universität Luxemburg und des japanischen Elektronikunternehmens TDK melden Fortschritte in der Photovoltaikforschung. Dazu verbesserten sie eine leitfähige Oxidschicht derart, dass diese im Infrarotbereich mehr Transparenz aufweist und so mehr Sonnenlicht zur Umwandlung in Strom ausnutzen kann. Zwar wurden vorher schon ähnliche solcher Versuche unternommen, doch dies ist das erste Mal, dass die Schichten in einem einstufigen Verfahren hergestellt wurden und gleichzeitig an der Luft stabil blieben.

Abb.: Die Schichten der neuen Solarzellen sind nun auch für infrarotes Licht transparent und bleiben langfristig an der Luft stabil. (Bild: Luc Deflorenne/Université de Luxembourg)


„Die neuen Schichten wurden anderthalb Jahre der Luft ausgesetzt und sind immer noch genauso leitfähig wie frisch nach der Herstellung“, sagt Professor Susanne Siebentritt, Leiterin des Photovoltaiklabors an der Universität Luxemburg. „Ein fantastisches Ergebnis nicht nur für Solarzellen, sondern auch für eine ganze Reihe anderer Technologien“, fügt sie hinzu. Mitbeteiligt an der Studie waren Dr. Matj Hála, wissenschaftlicher Mitarbeiter im Photovoltaiklabor, sowie Shohei Fujii und Yukari Inoue, Gastwissenschaftler von TDK.

Transparente, leitfähige Oxide werden in jedem Gerät eingesetzt, das Elektronik und Licht kombiniert, wie LED-Lampen, Solarzellen, Fotodetektoren oder auch Touchscreens. Sie verbinden die Eigenschaften von Metallen – die bislang besten elektrischen Leiter – mit jenen von Oxiden, die normalerweise transparent, aber nicht leitfähig sind, wie beispielsweise Glas. In Solarzellen muss die Schicht einerseits leitfähig sein, weil sie die obere Elektrode bildet. Gleichzeitig muss sie transparent sein, damit das Sonnenlicht die Ebene darunter erreicht, in der Strom hergestellt wird.

Die Oxide, die diese Schicht bilden, können durch das absichtliche Hinzufügen von Verunreinigungen leitfähig gemacht werden. Zinkoxid mit hinzugefügtem Aluminium ist ein häufig verwendetes Beispiel. In diesem Fall gibt das Aluminium freie Elektronen, die für die Leitfähigkeit verantwortlich sind, an das Zinkoxid ab. Doch weil diese freien Elektronen auch Infrarotlicht absorbieren, kann weniger Sonnenenergie durchströmen.

Um pures Zinkoxid leitfähiger zu machen, veränderte das Team der Universität Luxemburg und von TDK das Verfahren zur Herstellung der Schicht. „Dank des länderübergreifenden Wissensaustauschs hatte unser multidisziplinäres Team die Idee, eine zusätzliche Komponente – ein weiteres Gasplasma – in den sogenannten Sputter-Prozess zu integrieren. Auf diese Weise wird das Material auch ohne Aluminium leitfähig“, erklärt Prof. Siebentritt.

Diese Methode ermöglicht es, weniger, aber dafür schnellere Elektronen zu erhalten. „Mit diesem Ergebnis bleibt die Leitfähigkeit ähnlich wie mit Aluminium, aber die Transparenz im Infrarotbereich ist viel besser, da weniger freie Elektronen auch weniger Absorption verursachen. So werden Solarzellen effizienter“, fügt Dr. Matj Hála hinzu.

Universität Luxemburg / LK

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen