Turbulente Spitzenwirbel
Bessere Beherrschung von Turbulenzen bei Flugzeugen, Schiffen und Windkraftanlagen.
Flugreisen werden immer beliebter. Der Andrang auf den Flughäfen nimmt stetig zu. Mancher Fluggast mag sich daher umso mehr darüber wundern, warum jedes Flugzeug erst fünf, sechs Minuten auf die Startfreigabe warten muss, nachdem das vorherige Flugzeug bereits abgehoben hat. Grund dafür sind nicht etwa unzureichende Flugpläne, sondern Turbulenzen. Immer wenn ein Flugzeug auf der Startbahn des Flughafens abhebt, entsteht hinter ihm ein hochenergetisches Turbulenzfeld. Dieses Turbulenzfeld besteht aus Wirbeln, die sich von den Flügelspitzen eines Flugzeugs lösen und daher auch Spitzenwirbel genannt werden. Sie drehen sich zueinander gegenläufig und bewirken so in der Region hinter einem gestarteten Flugzeug eine Abwärtskraft. Wenn sich ein solches Turbulenzfeld noch nicht genügend abgeschwächt hat, kann es zum Absturz einer nachfolgend startenden Maschine führen.
Abb.: Turbulenzen hinter einem startenden Flugzeug. (Bild: U. Rostock)
Auch während des Fluges können diese Spitzenwirbel Probleme hervorrufen. Der Pilot kündigt dann an, den Sicherheitsgurt anzulegen, da das Flugzeug aufgrund der Druckdifferenz zu schwingen anfängt. Möglicherweise hat ein Jumbojet vor ein paar Minuten den gleichen Weg zurückgelegt und die von ihm verursachten Turbulenzen sind noch im Flugkorridor.
Nicht nur im Luftverkehr, sondern auch bei der Schifffahrt stellen Wirbelstrukturen eine große Herausforderung dar. Die Spitzen von Schiffspropellern können ebenfalls diese Art von Wirbeln verursachen, die die Einlaufströmung zu den Rudern der Schiffe beeinflussen können. Infolgedessen lässt sich das Schiff schwerer steuern und Erosionen treten verstärkt auf. Auch an den Spitzen einer Windturbine entstehen derartige Wirbel, die das Windfeld in einem ganzen Windpark abschwächen können und so die Energieerzeugung verschlechtern.
Unter der Leitung von Nikolai Kornev versucht ein Forscherteam an der Uni Rostock, die Entstehung der Spitzenwirbel besser zu verstehen, um die Wirbelbildung zu vermindern. Mit Hilfe großer Computercluster wird schon länger versucht, solche Turbulenzfelder zu berechnen. Anders als in der numerischen Simulation vorausberechnet, bleiben in der Realität solche Wirbel sehr lange in der Luft erhalten. Das Rostocker Team wählt deshalb einen neuartigen Ansatz. Die großen Wirbel in der Nähe der Flügel werden dazu wie bisher üblich mit einer Computersimulation berechnet. Das weiter entfernte Wirbelfeld wird mit einer Vortex-
Sobald es gelingt, das Turbulenzfeld an jedem einzelnen Punkt im Nachströmbereich mathematisch genau zu verstehen, wird es möglich, durch eine gezielte Veränderung der Tragflächen die Entstehung der Spitzenwirbel zu vermindern. Das würde wiederum zu mehr Stabilität für das Flugzeug, eine verbesserte Sicherheit und zu mehr Komfort beim Fliegen führen. Sollte die Wartezeit nach einem Start eines Flugzeugs bis zum nächsten Start von fünf auf drei Minuten verringert werden können, würde die Kapazität bestehender Flughäfen weltweit nahezu verdoppelt werden können. Kostenersparungen beim Bau neuer Flughäfen und verringerte Wartezeiten wären die Folge. Bei Schiffen könnte sich die Erosion reduzieren und bei Windkraftanlagen die Effizienz der Stromerzeugung verbessern lassen.
U. Rostock / RK