Viel Laborarbeit im All
Astronaut Alexander Gerst wird auf der ISS eine ganze Reihe unterschiedlicher Experimente zu betreuen haben.
Der deutsche ESA-Astronaut Alexander Gerst und seine Teamkollegen, der russische Kosmonaut Maxim Suraev und der amerikanische Astronaut Reid Wiseman, sind auf der Internationalen Raumstation ISS eingetroffen. Die Crew startete 28. Mai 2014 um 21.57 Uhr mitteleuropäischer Zeit (29. Mai, 1.57 Uhr Ortszeit) vom Weltraumbahnhof Baikonur ins All. Ihr Flug vom Startplatz in Kasachstan bis zur ISS dauerte sechs Stunden. Noch in der Nacht, um 3.44 Uhr mitteleuropäischer Zeit, dockte die Sojus-Kapsel mit der Crew an die Raumstation. Um 5.52 Uhr MESZ öffnete sich die Verbindungstür zur ISS – Alexander Gersts Mission „Blue Dot“ hat begonnen.
Abb.: Nach einem sechsstündigen Flug und einem rund zweistündigen Andockmanöver sind Alexander Gerst (2. v. r.), Reid Wiseman (l.) und Maxim Surajew (Mitte) glücklich an Bord der ISS angekommen. (Bild: NASA)
Alexander Gerst hat es einmal grob überschlagen: Rund 6000 Stunden hat er für seine Mission weltweit trainiert und sich in Houston, Moskau, Tokio und Köln auf das Leben und Arbeiten in der ISS vorbereitet. Mit dem Start vom kasachischen Weltraumbahnhof Baikonur hat das Training ein Ende, und Gerst muss seine erworbenen Kenntnisse in seinen sechs Monaten im Weltall anwenden. Während seiner Zeit im All wird Alexander Gerst rund 100 Experimente durchführen. 25 dieser Experimente finden unter Führung deutscher Projektwissenschaftler oder mit deutscher Industriebeteiligung statt. Dazu gehören Experimente des Deutschen Zentrums für Luft- und Raumfahrtforschung (DLR) wie DOSIS-3D zur Charakterisierung der Weltraumstrahlung oder materialwissenschaftliche Experimente im Elektromagnetischen Levitator EML, aber auch Experimente von Forschungseinrichtungen wie der Charité Berlin, der Deutschen Sporthochschule oder dem Fraunhofer Institut für Physikalische Messtechnik sowie von Unternehmen wie Airbus werden auf dem täglichen Stundenplan des 38-jährigen Astronauten stehen.
Die Laborarbeit behandelt ein breites Spektrum von Themen. Wie können Turbinenschaufeln noch leichter und gleichzeitig stabiler werden? Kann ein elektrischer Leiter ein Magnetfeld aufbauen, das Raumschiffe vor dem Sonnenwind schützt? Was können wir aus den physiologischen Veränderungen, die die Astronauten im Weltraum erfahren, für den Menschen auf der Erde lernen? Diesen und weiteren Fragen will Alexander Gerst bis zu seiner Landung am 11. November 2014 nachgehen.
Leichte und stabile Werkstoffe sind wichtig für die Industrie. Da in der Umlaufbahn der ISS Schwerelosigkeit herrscht, verteilen sich Legierungsbestandteile einheitlich in der Schmelze. Je einheitlicher die Verteilung, desto stabiler und hochwertiger ist der Werkstoff. Bislang werden auf der ISS schon Gussteile in den beiden Öfen des Material Science Lab (MSL) geschmolzen. Um diese Forschung weiter auszubauen, soll Alexander Gerst einen neuen, einzigartigen Hightech-Schmelzofen, den Elektromagnetischen Levitator (EML), auf der ISS installieren, in Betrieb nehmen und bis zu sechs Proben schmelzen. In dem Kooperationsprojekt EML von DLR und ESA schweben die Proben frei im Raum und werden durch ein elektromagnetisches Feld in Position gehalten. Mit dem Ofen wollen viele Forscher – unter anderem Wissenschaftler des DLR-Instituts für Materialphysik im Weltraum, deutscher Universitäten, des Forschungsinstituts ACCESS in Aachen und der Metallindustrie – neuartige Legierungen testen.
Gerst will auch untersuchen, wie sich Emulsionen in Schwerelosigkeit verhalten und wie man diese Mixturen stabiler machen kann. Emulsionen spielen zum Beispiel in der Lebensmittelproduktion, der kosmetischen und pharmazeutischen Industrie, aber auch in der Ölindustrie eine wichtige Rolle. Viele dieser speziellen Mischungen müssen in Lebensmitteln, Kosmetika und pharmazeutischen Produkten lange Zeit hochstabil bleiben. Im Experiment PASTA werden die Eigenschaften von Emulsionen in der FASES- und in der brandneuen FASTER-Anlage untersucht. Im DCMIX-Experiment der Universität Bayreuth untersucht Alexander Gerst Diffusionsprozesse in Fluiden, die wenigstens drei Komponenten enthalten. Das Experiment soll auch dabei helfen, Mischungsunterschiede von Erdöl in Lagerstätten besser zu verstehen.
Abb.: Alexander Gerst trainiert am Europäischen Astronautenzentrum EAC in Köln den Einbau des MagVector/MFX-Experimentcontainers in das European Drawer Rack (EDR) im europäischen Columbus-Modul. (Bild: DLR)
Auch die Plasmaforschung wird während der Blue Dot-Mission eine wichtige Rolle spielen. Gerst soll die PK-4-Anlage in Empfang nehmen und im europäischen Columbus-Labor installieren. Mit dem Nachfolger der deutschen Anlagen PK-3 und PK-3-Plus sollen physikalische Grundlagen komplexer, dreidimensionaler Plasmen erforscht werden. Diese Plasmen bestehen aus einem kalten elektrisch leitendenden Gas, das mit Staubpartikeln angereichert ist. Da die Partikel absinken und das komplexe Plasma in Richtung der Schwerkraft stauchen, ist ein Plasmakristall auf der Erde auf nur wenige Gitterebenen begrenzt. Nur unter Schwerelosigkeit lassen sich große, homogene 3D-Strukturen ungestört erforschen. Auf der Erde hilft diese Forschung, Staubbildung beim Herstellungsprozess von Mikrochips zu kontrollieren. An den ISS-Experimenten sind neben der neugegründeten „Forschergruppe Komplexe Plasmen“ im DLR in Oberpfaffenhofen, Wissenschaftler des Joint Institute for High Temperatures (JIHT) in Moskau und der Universität Gießen beteiligt.
Das Erdmagnetfeld schützt unseren Planeten vor dem Sonnenwind. Unser Nachbarplanet Venus besitzt keinen solchen natürlichen Schutzschirm. Dort trifft das solare Magnetfeld ungehindert auf die Ionosphäre der Venus, die als eine Art elektrischer Leiter mit dem Magnetfeld der Sonne eine Wechselwirkung erzeugt. Solche Bedingungen untersucht das MagVector/MFX-Experiment des DLR Raumfahrtmanagements. Die ISS liefert für diese Messungen ideale Bedingungen: Mit einer Orbitalgeschwindigkeit von rund 7,5 Kilometern pro Sekunde durchfliegt die Raumstation ständig das Erdmagnetfeld und liefert so permanent eine Laborumgebung im Planetenmaßstab für MFX. Aufwendige Spezialverkleidungen für Raumfahrzeuge könnten eines Tages der Vergangenheit angehören.
In der Schwerelosigkeit läuft im Zeitraffer das Gleiche ab, was Menschen beim Alterungsprozess auf der Erde erleben: Muskelabbau, Osteoporose, Rückenbeschwerden, Kreislauf- und Orientierungsprobleme, zunehmende Kraftlosigkeit sowie Probleme im Immunsystem. Daher kann man in der Raumfahrtmedizin an gesunden Astronauten Krankheiten und Alterungsphänomene studieren. Alexander Gerst ist auch ein Proband für die medizinische und biologische Forschung: Veränderungen des Knorpels im Kniegelenk, der Tagesrhythmik der Körperkerntemperatur sowie der Eigenschaften der Haut sind drei der deutschen Experimente, die vor der Mission „Blue Dot“ begonnen haben und die Gerst erfolgreich weiterführen soll.
In der Astrobiologie erforschen Wissenschaftler unter anderem diese Fragen nach dem Ursprung des Menschen, der Verteilung und der Entwicklung von Leben sowie nach Lebensmöglichkeiten außerhalb der Erde. Mit den beiden Experimenten BOSS und BIOMEX will Gerst dazu beitragen, Antworten auf diese Fragen zu finden. Unter anderem werden Mikroorganismen in der Anlage Expose-R an der Außenseite der ISS den harten Bedingungen des Weltraums wie Strahlung und Vakuum ausgesetzt.
DLR / DE