04.08.2014

Wie zündet man eine Supernova?

Gammastrahlen deuten darauf hin, dass sich manche Sternexplosionen auch von außen zünden lassen.

Beobachtungen bei sehr hohen Energien mit dem Weltraumobservatorium INTEGRAL zeigen ein überraschendes Signal in der Gammastrahlung einer Supernova-Explosion: Das Signal stammt von der Oberfläche des Materials, das durch die Explosion herausgeschleudert wurde; und stellt das gängige Explosionsmodell für Supernovae vom Typ Ia infrage. Die Daten deuten darauf hin, dass ein derart energiereiches Ereignis auch von außen gezündet werden kann – und nicht nur im Zentrum des explodierenden Zwergsterns.

Abb.: Künstlerische Darstellung eines Binärsystems, in dem Masse von einem Begleiter auf einen weißen Stern Zwerg übertragen wird. (Bild: ESA / J. R. Maund, U. Cambridge)

Im Januar leuchtete in der nahe gelegenen Starburst-Galaxie M82 eine Supernova-Explosion auf, die den Namen SN2014J erhielt. Nur zwei Wochen später konnten Astronomen Daten dieses Objekts mit dem Weltraumteleskop INTEGRAL aufnehmen, und sie entdeckten dort zwei charakteristische Gammalinien des radioaktiven Isotops Nickel-56. Supernovae sind riesige Kernfusionsöfen, und die Wissenschaftler gehen allgemein davon aus, dass diese Atomkerne das Hauptprodukt der Kernfusion im Inneren des Supernova sind. Das radioaktive Nickel wird vor allem im Zentrum des explodierenden weißen Zwergsterns erzeugt und entzieht sich daher einer direkten Beobachtung. Im Laufe der Explosion verdünnt sich die gesamte Sternmaterie, die äußeren Schichten werden immer transparenter und nach einigen Wochen bis Monaten sollte auch Gammastrahlen aus der Nickel-Zerfallskette beobachtbar sein.

Als die Astronomen die aktuellen Daten überprüften, fanden sie jedoch bereits 15 Tage nach der Explosion Spuren des Zerfalls von radioaktivem Nickel. Damit muss sich das beobachtete Material in der Nähe der Oberfläche der Explosion befunden haben – ein überraschender Befund. „Dieses überraschende Signal stellte uns vor ein Rätsel“, beschreibt Roland Diehl vom Max-Planck-Institut für extraterrestrische Physik (MPE), der Principal Investigator des INTEGRAL-Spektrometer Instruments. „Aber wir konnten keine Fehler finden; die Gammalinien von Nickel-56 wurden wie vom radioaktiven Zerfall erwartet innerhalb weniger Tage schwächer und kamen eindeutig aus der Richtung der Supernova“, erklärt er das Ergebnis ihrer Analyse der Beobachtungsdaten. Das Expertenteam am MPE zur Analyse von Gammalinien entwickelt seit vielen Jahren spezielle Methoden für die hochauflösende Spektroskopie. Diese haben sie bereits erfolgreich bei der Untersuchung der Nukleosynthese in der gesamten Milchstraße sowie beim Supernovaüberrest Cassiopeia A angewendet – und nun bei den jüngsten Supernova-Beobachtungen.

Abb.: Das INTEGRAL-Weltraum-Observatorium für Gammastrahlen von kosmischen Quellen. (Bild: ESA)

„Wir wissen, dass eine Supernova den weißen Zwergstern innerhalb einer Sekunde verbrennt; aber wir sind uns nicht sicher, wie die Explosion gezündet wird“, erklärt Wolfgang Hillebrandt, Mitautor der Studie am Max-Planck-Institut für Astrophysik. „Das Eingreifen des Begleitsterns scheint zwingend erforderlich zu sein“, fährt er fort. „Eine Weile glaubten wir, dass nur diejenigen weißen Zwerge explodieren, die mit Material vom Begleitstern über eine kritische Grenzmasse hinaus überladen werden.“ Dann allerdings würde die Explosion im Kern des weißen Zwergs gezündet werden; auf der Außenseite sollten keine Kernfusionsprodukte zu sehen sein.

Diehl, Hillebrandt und ihre Kollegen erörterten das Ergebnis ausführlich und stellten sowohl die Methoden der Datenanalyse als auch diverse Szenarien für Supernova-Explosionen zur Diskussion. Sie berichten nun über ihre Ergebnisse, die durch statistische Argumente untermauert werden, und beschreiben ihre Methoden so, dass andere Wissenschaftler diese wichtige Entdeckung selbst beurteilen können. Zusammenfassend schließen sie, dass diese Gammastrahlen neue Informationen darüber liefern, wie der Materialfluss von einem Begleitstern eine solche Supernova von außen entzünden kann – ohne die Notwendigkeit, zuerst eine kritische Massengrenze für weiße Zwergsterne zu überschreiten.

Aufgrund des frühen Erscheinens der Nickel-Gammastrahlen scheint es, dass sich ein geringer Teil der äußeren Materie, die von dem Begleitstern akkretiert wurde, entzündete und zu Fusionsasche verbrannte, einschließlich des beobachteten Nickel. Diese primäre Explosion löste dann die eigentliche Supernova aus, die auch viele Teleskopen in anderen Wellenlängenbereichen beobachten konnten – in jenen Daten erscheint hingegen die Supernova „ganz normal“.

Mit Gamma-Strahlen des radioaktiven Zerfalls kann man jedoch direkt die Asche der Kernfusion beobachten; sie liefern damit einzigartige Informationen über solche Explosionen. Das Szenario, das die Astrophysiker hier beschreiben, passt gut zu neueren Überlegungen, dass die ziemlich schnellen Materialflüsse, die bei verschmelzenden weißen Zwergen auftreten können, häufig der Ursprung von Supernovae dieses Typs sein könnten.

MPE / DE

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen