13.03.2013

Zweite Runde für elektronische Quanteneffekte

DFG fördert Nano-Forschergruppe an der Uni Würzburg für drei weitere Jahre.

Immer schneller, immer kleiner und immer mehr Speicherplatz: Moderne Computer sind heute zu Rechen- und Speicherleistungen fähig, für die noch vor wenigen Jahrzehnten ganze Fabrikhallen voller Rechnerschränke notwendig gewesen wären – der Miniaturisierung sei Dank. Dieser Prozess wird jedoch, wenn er in diesem Tempo fortschreitet, in der auf Silizium basierenden Mikroelektronik in wenigen Jahren an grundlegende physikalische Grenzen stoßen. Dann sind neue Konzepte und Materialien gefragt.

Abb.: Schematisches Bild eines „künstlichen“ Festkörpers aus zwei verschiedenen Metalloxiden. Obwohl beide Oxide elektrische Isolatoren sind, entsteht an ihrer Grenzfläche ein hochleitfähiges zweidimensionales Elektronensystem (grün), das bei tiefen Temperaturen supraleitend, aber auch magnetisch werden kann. (Bild: G. Berner)

Die Effekte, die in der Nanowelt auftreten, verstehen und für die technische Weiterentwicklung nutzbar machen: Daran arbeiten Wissenschaftler in der DFG-Forschergruppe FOR1162: Electron Correlation-Induced Phenomena in Surfaces and Interfaces with Tunable Interactions. 2009 hat die Gruppe an der Fakultät für Physik und Astronomie der Universität Würzburg die Arbeit aufgenommen; im vergangenen Jahr hat die DFG die bisher geleistete Arbeit positiv begutachtet. Jetzt kam der neue Förderbescheid: In den kommenden drei Jahren stellt die DFG der Forschergruppe insgesamt drei Millionen Euro zur Verfügung. Das Geld soll insbesondere dem wissenschaftlichen Nachwuchs und der internationalen Vernetzung der Würzburger Aktivitäten zugutekommen.

„Wenn elektronische Bauelemente immer kleiner werden, spielt die elektrische Abstoßung zwischen den Leitungselektronen eine immer wichtigere Rolle für die Funktionalität dieser Elemente“, erklärt Ralph Claessen, Sprecher der Forschergruppe und Inhaber des Lehrstuhls für Experimentelle Physik 4 an der Universität Würzburg. Dann nämlich treten Quanteneffekte auf, die umso ausgeprägter sind, je stärker die Bewegungsfreiheit der Elektronen eingeschränkt wird.

Und eine solche Einschränkung ergibt sich zwangsläufig, wenn die Strukturen nur noch wenige Nanometer groß sind und sich über zwei oder sogar nur noch eine Raumdimensionen erstrecken. In der konventionellen Halbleitertechnologie sorgen diese Effekte für unerwünschte Störungen; in komplexeren Festkörpermaterialien lassen sie sich möglicherweise für neuartige Anwendungen nutzen, hoffen die Physiker.

„Die Forschergruppe beschäftigt sich mit maßgeschneiderten ‚künstlichen‘ Festkörpern“, erklärt Claessen. Diese sind nur wenige Millionstel Millimeter groß und aus unterschiedlichen Materialien aufgebaut. „Mithilfe modernster Herstellungsmethoden können wir ihren Aufbau bis hin zu atomaren Größenordnungen präzise kontrollieren“, so der Wissenschaftler.

Zwei Ziele verfolgt die Forschergruppe: Zum einen will sie die in solchen Systemen auftretenden Quanteneffekte grundlegend verstehen. Zum anderen arbeitet sie daran, die sich aus diesen Quanteneffekten ergebenden elektronischen und magnetischen Funktionalitäten gezielt zu beeinflussen und nutzbar zu machen. Beispiele für Anwendungen sind neuartige Transistoren oder Solarzellen, elektrisch beschreibbare magnetische Speicherbits, oder schaltbare Supraleiter. Die Forschergruppe kann sich für ihre Aktivitäten auf ein breites Spektrum experimenteller und theoretischer Methoden aus neun Teilprojekten stützen, insbesondere auf modernste Spektroskopieverfahren.

JMU / DE

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Meist gelesen

Themen