Ein globales Netzwerk von mehreren hundert Rechenzentren bildet das Rückgrat für die Datenauswertung der Experimente am CERN. (Bild: CERN, vgl. S. 25)
Physik Journal 5 / 2011
Meinung
Inhaltsverzeichnis
Aktuell
Fukushima: ''Pauschalurteile dürfen wir uns nicht erlauben''
Interview mit Joachim Knebel
High-Tech
Im Brennpunkt
Reibungslos klettern
An einem schrägen Glasdach herunter laufende Regentropfen sind ein vertrautes Bild – doch es geht auch anders herum!
Rückschlag für die Suche nach kosmischen Hadronenbeschleunigern?
Der beste bisherige Kandidat zeigt ein Spektrum, das nur auf beschleunigte Leptonen hindeutet.
Überblick
Rechnen im Netz
Das Grid Computing ist für die Datenanalyse der LHC-Experimente unentbehrlich.
Mit dem Start des regulären Betriebs des Large Hadron Collider (LHC) am CERN begann für die Teilchenphysik eine neue Ära. In dieser sollen sich zentrale Fragen klären wie die nach dem Ursprung der Masse oder nach der theoretisch vermuteten Supersymmetrie zwischen Fermionen und Bosonen. Die beteiligten Physiker haben sich aber auch auf vielerlei Szenarien neuer Physik jenseits des bisher äußerst erfolgreichen Standardmodells der Teilchenphysik vorbereitet. Das Rückgrat für die Datenauswertung der Experimente bildet ein globales Netzwerk von mehreren hundert Rechenzentren, das „Worldwide LHC Computing Grid“.
Nach jahrzehntelangen Aufbauarbeiten des LHC und der Detektoren ALICE, ATLAS, CMS und LHCb konnten am 10. September 2008 alle Experimente erstmals Strahlreaktionen der Protonen im LHC bei einer Injektionsenergie von 450 GeV aufzeichnen. Während der mehr als einjährigen Reparaturphase nach einer technische Panne im September 2008 gelang es, Milliarden Ereignisse aus der kosmischen Strahlung zu registrieren und damit eine erste Eichung der Detektorkomponenten vorzunehmen. Die Zeit diente insbesondere auch dazu, die Verteilung und Auswertung der Daten innerhalb des Computer-Netzwerks der am LHC beteiligten Institute unter realistischen Bedingungen zu erproben und zu verbessern. Bei der Wiederinbetriebnahme Ende 2009 löste der LHC mit dem Erreichen einer Schwerpunktsenergie von 2,36 TeV schließlich das Tevatron als weltweit leistungsstärksten Beschleuniger ab. Nach einer kurzen Winterpause lief der LHC dann ab dem 30. März 2010 im regulären Betrieb bei einer Schwerpunktsenergie von 7 TeV. ...
Wenn einzelne Elektronen zählen
Hochpräzise Kontrollmechanismen eröffnen Möglichkeiten für festkörperbasierte Quantensysteme.
In nanoskaligen Festkörpersystemen wie Quantenpunkten beruhen Transportphänomene auf einzelnen Elektronen. Gekoppelte Quantenbauelemente erlauben es, zeitabhängig nachzuweisen, wenn ein einzelnes Elektron auf einen Quantenpunkt kommt bzw. ihn verlässt. Dies erlaubt Strom- und Rauschmessungen mit einer Empfindlichkeit, die jene von konventioneller Messelektronik um mehrere Größenordnungen übersteigt. So lässt sich experimentell die Selbstinterferenz eines quantenmechanischen Teilchens nachweisen. Eine derart präzise Kontrolle war bislang nur im Bereich der Quantenoptik möglich.
Schaltvorgänge in heutigen Halbleitertransistoren basieren auf der Verschiebung von einigen Dutzend Elektronen. Diese Zahl sinkt exponentiell mit der Zeit, ganz wie die Zahl der Transistoren pro Chip gemäß dem Mooreschen Gesetz exponentiell zunimmt. Extrapoliert man die Entwicklung der letzten 30 Jahre, dürfte ein Transistor spätestens in 15 Jahren nur noch mit einem einzigen Elektron geschaltet werden. Ist das realistisch? Oder erwächst dies zu einem weiteren physikalischen Grund, warum die derzeitige Entwicklung der Computertechnologie zu Ende gehen oder sich in eine andere Richtung entwickeln wird? Könnte man umgekehrt diese Situation zum Anlass nehmen, um über das Verständnis und mögliche Anwendungen von Halbleiter-Quantensystemen neu nachzudenken? So genannte Einzelelektronentransistoren, bei denen der Stromfluss nach der Regel „ein Elektron nach dem anderen“ funktioniert, sind seit rund zwei Jahrzehnten Gegenstand der Untersuchungen und mittlerweile bestens verstanden. Neue Fragen ergeben sich aus der Zeitabhängigkeit des elektronischen Transports, aus den Korrelationen zwischen Elektronen sowie der Kohärenz und der Manipulierbarkeit ihrer Zustände. ...
Geschichte
Nicht zu unterscheiden
Vor hundert Jahren erkannte der polnische Physiker Wadysaw Natanson als Erster die für Quantenstatistiken grundlegende Voraussetzung der Ununterscheidbarkeit.
Eigentlich müsste die heute nach Bose und Einstein benannte Quantenstatistik Natanson-Bose-Einstein-Statistik heißen. Der Doyen der theoretischen Physik in Polen, Wadysaw Natanson (1864–1937), hat nämlich wichtige, aber bis heute viel zu wenig bekannte Beiträge zur Thermodynamik irreversibler Prozesse und zur Quantentheorie der Strahlung geleistet.
Wladyslaw Natanson wuchs in einer jüdischen Bankiers- und Industriellen-Familie mit wissenschaftlicher Tradition auf, die sicher zu seiner günstigen Entwicklung in den Jugendjahren beigetragen haben dürfte [1, 2]. Bereits im Alter von acht Jahren schrieb er Aufsätze über verschiedenste Gebiete der Wissenschaft, nicht nur auf Polnisch, sondern auch in Englisch, Deutsch und Französisch. Dabei zeigte er eine für sein Alter ungewöhnliche Wortwahl und Stilistik. ...