Innerhalb weniger Jahre wurde die Photovoltaik massiv ausgebaut. (vgl. S. 21, Bild: Simon Kraus / fotolia.com)
Physik Journal 2 / 2014
Meinung
Inhaltsverzeichnis
Aktuell
High-Tech
Im Brennpunkt
Bose-Einstein-Kondensat in Plastik
Polaritonen, die durch die starke Kopplung von organischem Material an eine Mikrokavität herrühren, rücken quantenmechanische Kondensationsphänomene in die Anwendungsnähe.
Elemente der Stern-Explosionen
Erste Beobachtungen von Argon und Phosphor in Supernova-Überresten sind ein Prüfstein für Computermodelle.
Überblick
Perspektiven der Photovoltaik
Bei weiter steigenden Wirkungsgraden werden die Modul- und Systempreise deutlich sinken und eine großvolumige Industrie entstehen. Das bietet Chancen für die deutsche und europäische Industrie.
Eine vollständige Versorgung mit erneuerbaren Energien war bis vor wenigen Jahren für die allermeisten unvorstellbar. Doch in nur einer Dekade sind die Kosten der Umwandlung von Wind- und Sonnenenergie in Strom (die Gestehungskosten) aufgrund der technologischen Entwicklung und der zunehmenden Massenfertigung deutlich gesunken und vergleichbar zu konventionellen Kraftwerken. Angesichts des weiteren Potenzials für Kostensenkungen ist zu erwarten, dass die regionale und dezentrale Stromversorgung mit erneuerbaren Energien in Verbindung mit Speichertechnologien schnell voranschreiten wird.
Wir leben in einer spannenden Zeitenwende, die von einer mehr und mehr dezentralen Stromproduktion durch erneuerbare Energien geprägt ist. Neben der Windkraft spielt hierbei die Photovoltaik (PV) eine besondere Rolle. Nach der Erfindung 1954 in den USA dienten die ersten Silizium-Solarzellen in den 1960er-Jahren zur Stromversorgung von Satelliten. In den 1970er-Jahren waren die wenige Quadratzentimeter großen Solarmodule auf Taschenrechnern und vielen Consumer-Produkten wirtschaftlicher als die kleinen Knopfbatterien. Die 1980er-Jahre sahen erste PV-Großkraftwerke, wie das in Carissa Plains (USA) mit 6 Megawatt, und eine Vielzahl von wirtschaftlichen netzfernen Anwendungen.
In Deutschland führte das bundesweite „1000-Dächer“-Programm für netzintegrierte Photovoltaikanlagen im Zeitraum 1991 bis 1994 dazu, dass insgesamt rund 2500 Anlagen mit durchschnittlich 2,5 Kilowatt installiert wurden – weltweit zum ersten Mal flächendeckend in einem Industrieland. Gleichzeitig legte das für die Branche wichtige Strom-Einspeise-Gesetz (StrEG) fest, dass der Energieversorger für jede erneuerbar erzeugte Kilowattstunde (kWh) einen festen Betrag an den Erzeuger bezahlen musste.
Warum ist ein Marktunterstützungsprogramm für Strom aus neuen Technologien wie Wind und Sonne überhaupt sinnvoll? Wäre Strom ein Consumer-Produkt wie Autos oder Handys, gäbe es dafür keinen Grund. In einer Gesellschaft gibt es jedoch strategische Produkte wie Strom oder Ziele wie die Behandlung von PKW-Abgasen oder die Reduktion des Energieverbrauchs von Häusern. Ohne rechtliche Vorgaben würden Schwefel- und Stickoxide nicht aus Kraftwerksabgasen entfernt, wir hätten keine Katalysatoren in Autos und keine (oder wenig) Isolierung bei neuen Häusern. Beim Strom verschärft sich die Situation nochmals, da sich nicht erkennen lässt, auf welche Weise er erzeugt wurde. Neue Technologien, die am Anfang mit niedrigen Stückzahlen teuer sind, hätten hier keine Chancen – wie es vor 50 Jahren ohne Milliardensubventionen nie die Kernenergie gegeben hätte. Wenn aber Gesellschaft und Politik eine neue und bessere Technologie zur Stromerzeugung identifiziert haben, lässt sich nach heutiger Erkenntnis eine großvolumige Produktion am schnellsten und kostengünstigsten aufbauen durch die Unterstützung des Marktes. ...
Diffuse Banden im All
Laborexperimente unter astrophysikalischen Bedingungen sind notwendig, um die ständig wachsende Zahl der Beobachtungsdaten richtig interpretieren zu können
Erdgebundene und satellitengestützte Beobachtungen, deren Anzahl und Qualität kontinuierlich zunehmen, führen laufend zu neuen Erkenntnissen in der Astronomie. Um diese wachsende Datenflut optimal nutzen und insbesondere die beobachteten Spektren verstehen zu können, bedarf es neben Modellrechnungen auch gezielter Laborexperimente unter Bedingungen, die jenen im All entsprechen. Ein Beispiel ist eines der ältesten Rätsel der Astronomie: das Phänomen der diffusen interstellaren Banden (DIBs), für das eine endgültige Klärung noch aussteht.
Astrophysikalische Prozesse basieren auf einer Vielzahl von physikalischen und chemischen Einzelschritten, die man gründlich verstehen muss, um astronomische Beobachtungen korrekt interpretieren und weiterreichende Schlüsse ziehen zu können. Von besonderer Bedeutung sind elementare Prozesse, die traditionell in der physikalischen Chemie untersucht werden, wie die Wechselwirkung von Atomen, Molekülen, Clustern, Nanoteilchen und Staubpartikeln untereinander oder mit verschiedenen Strahlungsfeldern. Nur wenn diese mikroskopischen Prozesse gründlich verstanden sind, lassen sich die Beobachtungen direkt interpretieren und makroskopische Vorgänge und Strukturen mithilfe von Computern modellieren.
Die Bedeutung dieser Grundlagenforschung wird besonders deutlich angesichts der Fülle von Beobachtungsdaten, die Infrarot-Weltraumteleskope wie Spitzer und Herschel bereits heute zur Verfügung stellen oder die z. B. vom kürzlich in Betrieb genommenen Submillimeter-Array ALMA in der Atacama-Wüste zu erwarten sind. Die Vielzahl der involvierten Prozesse erfordert eine konzertierte Aktion von Astronomen, Physikern, Mineralogen, Chemikern und Biologen.
Diese Überlegungen gelten in besonderer Weise für die Erforschung des interstellaren Mediums (ISM) einschließlich seiner Molekül- und Staubwolken. Die gemeinsame Laborastrophysikgruppe des Max-Planck-Instituts für Astronomie und der Universität Jena führt daher Experimente in Apparaturen durch, welche die Bedingungen des Weltraums möglichst wirklichkeitsnah nachstellen. Dazu gehören tiefe Temperaturen, wie sie z. B. in interstellaren Molekülwolken vorherrschen (10 – 50 K), ebenso wie die hohen Temperaturen in alten, „entwickelten“ Sternen. Zudem muss ein ausgezeichnetes Vakuum gewährleisten, dass die zu untersuchenden Atome, Moleküle, Cluster und Staubteilchen nicht miteinander wechselwirken. Dafür stehen der Arbeitsgruppe in Jena leistungsfähige Hochvakuum-Apparaturen zur Verfügung, die es ermöglichen, frei propagierende Molekül- und Nanoteilchenstrahlen zu erzeugen und mit hochsensitiven Lasertechniken spektroskopisch zu charakterisieren. ...
Physik im Alltag
Menschen
Bücher/Software
DPG
Wandel mit Weitblick
Der Arbeitskreis Industrie und Wirtschaft (AIW) der DPG befasste sich auf seiner Arbeitstagung in Bad Honnef damit, wie sich Innovationen in Unternehmen durchsetzen lassen.
Tagungen
Foundations and New Methods in Theoretical Physics
WE-Heraeus-Sommerschule und 19. Doktorandenschule „Saalburg“
Electron Transport through Atoms, Molecules and Nanowires: Advances in Experiment and Theory
543. WE-Heraeus-Seminar