Die stroboskopische Aufnahme zeigt gejettete Tröpfchen beim piezoakustischen Tintenstrahldruck. (Bild: reproduziert aus A. van der Bos et al., Phys. Rev. Appl. 1, 014004 (2014), vgl. S. 30)
Ausgabe lesen
Die stroboskopische Aufnahme zeigt gejettete Tröpfchen beim piezoakustischen Tintenstrahldruck. (Bild: reproduziert aus A. van der Bos et al., Phys. Rev. Appl. 1, 014004 (2014), vgl. S. 30)
Dank Oberflächenschmelzen ist die Teilchenmobilität unter der Oberfläche deutlich erhöht.
Die App QuantumVR erlaubt es, spielerisch Quantengatter zu erkunden und kleine Quantenalgorithmen zu erstellen.
Im Projekt QuantumVR entsteht ein VR-Spiel für den Einstieg in die gatterbasierte Quantenprogrammierung zum Einsatz bei Outreach-Events. Bei dem Spiel mit Escape-Room-Elementen in virtueller Realität (VR) gilt es, kurze Quantenalgorithmen durch Platzieren einfacher Quantengatter zu lösen und damit Tiere zu befreien – ganz ohne Vorkenntnisse in Quantenmechanik.
Die Quantentechnologie gilt als eine der künftigen Schlüsseltechnologien [1]. Die Entwicklung der entsprechenden Hardware wird auf nationaler und europäischer Ebene mit großen Förderprogrammen vorangetrieben. Um die neuen Technologien tatsächlich nutzen zu können, ist es aber essenziell, auch an die Ausbildung der benötigten Fachkräfte zu denken. Bereits heute ist ein gravierender Fachkräftemangel zu spüren, der sich über die kommenden Jahre voraussichtlich weiter verschärfen wird. Umso wichtiger ist es, das Thema Quantentechnologien in der Ausbildung voranzutreiben – und zwar nicht nur an den Universitäten, etwa durch neue Masterstudiengänge. Die motivierende Wirkung, die von der aktuellen Berichterstattung über die Entwicklung von Quantencomputern in den Medien ausgeht, kann helfen, um Schülerinnen und Schüler gezielt anzusprechen und mit dieser Thematik das Interesse für ein Physikstudium zu wecken. International wurde in den letzten Jahren bereits eine Reihe spielerischer Ansätze zu Quantentechnologien entwickelt [2].
Darüber hinaus muss es ein Anliegen der Wissenschaft sein, interessierten Menschen zu ermöglichen, die Grundzüge der Technologie und ihre Folgen zu verstehen, einzuordnen und zu bewerten. Nur so ist es möglich, zu einer reflektierten gesellschaftlichen Debatte über das Zukunftspotenzial der Quantentechnologien zu gelangen. Dies eröffnet zudem die Möglichkeit, eventuellen Vorbehalten gegenüber dieser neuen Technologie zu begegnen. Das Projekt QuantumVR, das im Rahmen der BMBF-Initiative „Quantum aktiv“ gefördert wurde, setzt hier an und will einen spielerischen Zugang zu dieser Thematik bieten [3]. Ein Virtual-Reality-Spiel soll das Interesse an Quantentechnologien wecken und erste Einblicke in Quantenprogrammierung geben. Die spielende Person erstellt mit vorgegebenen Quantengattern einfache Quantenalgorithmen, um einen vorgegebenen Zielzustand zu erreichen. (...)
Die Physik des Tintenstrahldrucks ist sehr komplex und bietet großes Potenzial – weit über den Gebrauch in handelsüblichen Druckern hinaus.
Mit einem Tintenstrahldrucker haben wohl alle schon einmal ein digitales Dokument in Papierform gebracht. Die Geräte für den Hausgebrauch sind zu einem günstigen Preis verfügbar und die Druckergebnisse selbst bei Fotografien ansprechend. Die Grundlage moderner Tintenstrahltechnologie bildet ein komplexes Zusammenspiel verschiedener fluiddynamischer Prozesse.
Der Tintenstrahldruck [1] ist die technologische Anwendung der Mikrofluidik, die sich am weitesten verbreitet hat. Der Druckvorgang zeichnet sich durch eine hohe Tropfenfrequenz, kleine Tropfenvolumina und die extreme Reproduzierbarkeit des Druckergebnisses aus. Bekannt ist die Technik vor allem aus der grafischen Druckindustrie; es gibt aber auch zahlreiche andere Anwendungen, zum Beispiel beim Druck von Solarzellen, Mikrolinsen, Brennstoffzellen, Batterien, Leuchtanzeigen, Flachbildschirmen, Flüssigkristallanzeigen und Halbleitern, in der additiven Fertigung – speziell beim Rapid Prototyping – sowie beim Druck von Polymeren, DNA, Proteinen und lebendem Gewebe.
Einige dieser Anwendungen erlauben keine Fehler und müssen absolut zuverlässig funktionieren. Werden beispielsweise elektronische Bauteile per Tintenstrahldruck hergestellt, kann das Fehlen eines einzigen Tropfens bereits zum Ausfall des gesamten Schaltkreises führen. Auch die medizinische Diagnostik und die präzise Dosierung von Medikamenten erfordern eine ähnlich hohe Präzision.
Die Zusammensetzung und Beschaffenheit der Tinte hängt von der jeweiligen Anwendung ab. Entsprechend stellen Pigmente in einer wässrigen Lösung nur die gängigste Form dar. Um die Eigenschaften der Tinte gezielt zu steuern, kommen andere kolloidale Teilchen, Vernetzungsmittel, Tenside, Polymere und weitere Zusatzstoffe infrage. Solchen Tinten verfestigen sich in der Regel, wenn das Lösungsmittel verdampft. Bei moderneren Varianten gilt es, das Verfestigen aktiv herbeizuführen: Geschmolzenes Wachs oder flüssiges Metall werden unter ihre Schmelztemperatur abgekühlt, gelöste Kunststoffe vernetzen sich durch ultraviolette Strahlung und organisches Material härtet in chemischen Reaktionen aus. (...)
Laudationes auf die Preisträgerinnen und Preisträger der Deutschen Physikalischen Gesellschaft
747. WE-Heraeus-Seminar
DPG-Lehrerfortbildung