13.05.2009

Äquivalenzprinzip im Weltraumtest

Das Weltraumprojekt "Microscope" wird die Äquivalenz von träger und schwerer Masse in bisher nicht erreichbarer Genauigkeit überprüfen



Das Weltraumprojekt "Microscope" wird die Äquivalenz von träger und schwerer Masse in bisher nicht erreichbarer Genauigkeit überprüfen. Dafür wird ein Mikrosatellit der französischen Weltraumagentur CNES die aus der PTB stammenden Testmassen für die Beschleunigungs-Experimente in die Erdumlaufbahn bringen. Die 8 cm langen Testmassen bestehen aus konzentrisch ineinander steckenden Metallzylindern.



Abb.: Das Weltraumprojekt "Microscope" wird die Äquivalenz von träger und schwerer Masse in bisher nicht erreichbarer Genauigkeit überprüfen. Dafür wird ein Mikrosatellit der französischen Weltraumagentur CNES die aus der PTB stammenden Testmassen für die Beschleunigungs-Experimente in die Erdumlaufbahn bringen. Die 8 cm langen Testmassen (kleines Bild) bestehen aus konzentrisch ineinander steckenden Metallzylindern. (Bilder: CNES/PTB)


Seit Galilei und Newton gilt die Annahme, dass träge und schwere Masse äquivalent sind. Dies wird jedoch von neuen physikalischen Theorien wie der String-Theorie in Frage gestellt. Mit bisher unerreichter Genauigkeit wird das Äquivalenzprinzip nun im Weltraumprojekt "Microscope", einer deutsch-französischen Kooperation, auf den Prüfstand gestellt. Die PTB hat Fertigungs- und Messmethoden für die Herstellung der für die Beschleunigungsexperimente in einem erdnahen Orbit nötigen Testmassen entwickelt und erste Probekörper hergestellt. Der Weltraum ist der ideale Ort, um die Äquivalenz von träger und schwerer Masse mit einer Genauigkeit, die unter irdischen Verhältnissen nicht möglich ist, zu überprüfen. Dazu wird die französische Weltraumagentur CNES (Centre National d'Etudes Spatiales) ab dem Jahr 2012 einen Mikrosatelliten in eine erdnahe Umlaufbahn bringen und Beschleunigungsversuche an unterschiedlichen Testmassen durchführen. Kernstück dieser Versuche sind Paare von konzentrisch ineinander steckenden Metallzylindern, die im Gleichgewicht zwischen der Anziehungskraft der Erde (die auf die schwere Masse der Zylinder wirkt) und der Zentrifugalkraft (die auf die träge Masse wirkt) im Satelliten schweben. Wird der Satellit jedoch gezielt beschleunigt, so wird das Kräftegleichgewicht aufgehoben.

Die Aussagekraft dieser Beschleunigungsexperimente hängt grundlegend von der Qualität der eingesetzten Testmassen ab. Nur wenn Masse, Form, Dichte und thermische Ausdehnung der Zylinder sehr genau bekannt sind, können die möglicherweise sehr kleinen Differenzen zwischen träger und schwerer Masse überhaupt beobachtet werden. Dem Wissenschaftlichen Gerätebau der PTB ist es gelungen, den Herstellungsprozess für die Testmassen (aus einer Standard-Titan-Legierung sowie einer sehr speziellen Platin-Rhodium-Legierung) soweit zu optimieren, dass die Form- und Dimensionsabweichungen in allen drei Raumdimensionen der Metallzylinder im Bereich von 1 µm liegen. Diese Präzision stellte eine enorme technische Herausforderung dar, welche an die theoretischen Fertigungsgrenzen der einsetzbaren Fertigungsmaschinen ging. Umfangreiche Messtechnik musste dazu in die Bearbeitungsstation integriert werden.

Die bisher produzierten Prototypen wurden von den entsprechenden Fachlaboratorien der PTB überprüft, erfüllen die angestrebten Genauigkeiten und werden im Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) in Bremen, einem Kooperationspartner in dem Projekt, für Messungen im Fallturm eingesetzt, die dem Orbitalexperiment vorgelagert sind. Nach Auswertung dieser Messungen wird die PTB die eigentlichen Testmassen für die Satellitenexperimente fertigen.

Physikalisch-Technische Bundesanstalt (PTB)


Weitere Infos:


AL

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Meist gelesen

Themen