10.02.2014

Bismut-Atome in Aktion

Bewegung aufgezeichnet und manipuliert – Schritt zur Entwicklung ultraschneller atomarer Schalter.

Seit langem träumen Wissenschaftler davon, die Bewegung von Atomen in Materialien in Echtzeit mit Hilfe von Licht zu visualisieren und zu kontrollieren. Wäre man in der Lage, gezielt die Atome eines Materials in bestimmte vorprogrammierte Richtungen zu verschieben, so könnte man ultraschnelle Schalter auf atomarer Skala herstellen.

Abb.: Bismutkristallgebirge aus polykristallinem Bismut. (Bild: F. Müller, U. Duisburg-Essen)

Um die Bewegung der Atome zu kontrollieren, muss man sie jedoch visualisieren können: Erst wenn man versteht, wohin sich Teilchen bei Laser-Bestrahlung bewegen, kann man diese Bewegung zu seinen Zwecken einsetzen. Nur: Keine Kamera kann dies leisten. Atome sind eine Milliarde mal schneller, als die schnellste kommerzielle Kamera der Welt aufzeichnen kann, und so klein, dass eine Auflösung von 100 Billiarden Megapixeln notwendig wäre, um ihre Bewegung beobachten zu können. Martin Garcia, Leiter des Fachgebiets Festkörper und Ultrakurzzeitphysik an der Universität Kassel, und Eeuwe Zijlstra, Wissenschaftlicher Mitarbeiter am Fachgebiet, haben es dennoch geschafft: mit einem Trick.

Mit Hilfe von extrem kurzen Lichtpulsen nämlich ist es neuerdings möglich, zeitaufgelöst zu beobachten, wie Materialien nach Laseranregung Licht anders reflektieren: Durch die Anregung werden die Atome in schnelle Schwingungen versetzt, die dazu führen, dass das Licht im Laufe der Zeit vom Material anders zurückgeworfen wird. Die Reflektivität des Materials schwingt mit den Atomen mit. Anders ausgedrückt: Wer weiß, wie genau sich die Reflektivität während des Schwingens ändert, kann von den Lichtsignalen darauf zurückschließen, wo sich die Atome zu einem bestimmten Zeitpunkt aufhalten – und damit auf ihre Bewegung.

Die Kasseler Physiker Garcia und Zijlstra haben eine Theorie entwickelt, mit der sich die Bewegung der Atome aus dem Reflexionsvermögen bestimmen lässt. Damit lieferten sie den fehlenden Baustein, um Atom-Bewegungen zweidimensional zu visualisieren und zu kontrollieren. „Wir haben auf diesem Weg feststellen können, wo sich die Atome aufhalten – und zwar alle Atome im Material, nicht weniger als 10 hoch 23“, betont Garcia. „Die Tür zur Lichtmanipulation von Atomen in Festkörpern steht jetzt offen.“

In Zusammenarbeit mit japanischen Kollegen ist es Garcia und Zijlstra gelungen, die zweidimensionale Bewegung der Atome im Element Bismut nach ultrakurzer Laserbestrahlung zu visualisieren und zu steuern. Mehr noch: Jetzt, da die Bewegungen berechenbar waren, konnten die japanischen Wissenschaftler die planaren Schwingungen der Bismut-Atome durch gezielte Umformung von Lichtimpulsen beliebig manipulieren und die Bewegung dabei, mit Hilfe der Theorie von Garcia und Zijlstra, visuell darstellen.

U. Kassel / PH

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen