Förderband für Nanopartikel
Mehrwandige Nanoröhrchen aus Kohlenstoff könnten die Aufgaben eines Förderbandes in einer Nanofabrik übernehmen.
Förderband für Nanopartikel
Mehrwandige Nanoröhrchen aus Kohlenstoff könnten die Aufgaben eines Förderbandes in einer Nanofabrik übernehmen.
Berkeley (USA) – Um beliebige Strukturen aus Nanoteilchen zusammensetzen zu können, müssen sie gezielt gegriffen, bewegt und abgesetzt werden können. Atomfeine Mikroskopspitzen und Laserpinzetten leisten hier zwar schon gute Dienste, doch Schwierigkeiten bereitet noch der regelmäßige und kontinuierliche Nachschub des "Baumaterials". Mehrwandige Nanoröhrchen aus Kohlenstoff könnten nun quasi die Aufgaben eines Förderbandes in einer Nanofabrik übernehmen. Amerikanischen Physikern von der University of California in Berkeley gelang es, ausgewählte Metalle in Femtogramm-Mengen – angetrieben durch eine an das Röhrchen angelegte Spannung – über die Oberfläche von Kohlenstoffröhrchen rutschen zu lassen.
"Wenn sich die atomaren Platzierungsmöglichkeiten von Rastersondenmikroskopen mit einem solchen Nanoröhrchen-Transportsystem vereinen ließen, wäre das ein hervorragendes Bauwerkzeug für die Nanowelt", berichten Alex Zettl und seine Kollegen in der Fachzeitschrift "Nature". Und in der Tat scheint ihr Ansatz den Weg hin zu einem solchen Instrument zu ebnen. So deponierten sie aus der Dampfphase winzige Mengen des Metalls Indium auf einer mehrwandigen Nanoröhre in Form von winzigen, festen Kristallen. In einer Vakuumkammer schlossen sie diese beschichtete Röhre an einen Stromkreis an und heizten sie mit Strömen von rund 40 Mikroampere über den Schmelzpunkt von Indium auf. Wegen des herrschenden Temperaturgradienten auf der Röhre, die an der Anode heißer ist als an der Kathodenseite, wandert der maximal 100 Nanometer große Indiumtropfen langsam über die Kohlenstoffröhre.
Abb.: Wandernde Indiumtropfen auf einer mehrwandigen Kohlenstoffnanoröhre. Die Bilder entstanden im Abstand von jeweils einer Minute. (Quelle: A. Zettl, University of California, Berkeley)
Den so steuerbaren Transport des Metalltropfens beobachte Zettl unter einem Transmissionselektronenmikroskop (TEM) und hielt die Bewegung in einem Videofilm fest. Größere Förderstrecken erreichte die Arbeitsgruppe mit einem rund drei Mikrometer langen Bündel aus Nanoröhrchen. Bei Spannungen um die zwei Volt und Strömen von 50 Mikroampere ließen sich Indiummengen auf das Femtogramm genau in wenigen Minuten bis Sekunden über das Röhrchen hin und her bewegen. Dazu mussten sie lediglich die Pole des angeschlossenen Stromkreises vertauschen. "Sowohl die Förderrate als auch die Richtung dieses Massentransports hängt von der angelegten Spannung ab. Eine präzise Kontrolle ist möglich"; so Zettl. Wird der Stromkreis unterbrochen, stoppt auch sofort der Metalltransport. Den Grund für dieses schnelle "Abschalten" sehen die Forscher in der einzigartigen Leitfähigkeit der Nanoröhrchen.
Im Prinzip hält Zettl sogar eine Regelung der Fördermenge auf ein Atom genau für möglich. Um eine exakte Menge des transportierten Metalls an einem Ende der Röhre zu erhalten, müsse bei angelegter Spannung nur eine festgelegte Zeit gewartet werden, bis sich ein Indiumtropfen von der gewünschten Masse herausgebildet hat. Diesen Tropfen könne das Nanoröhrchen-Bündel dann quasi als Nanolötkolben an den gewünschten Ort absetzen. Ähnliche Erfolge erzielte die Gruppe auch mit anderen Metallen wie Gold, Platin, Zinn und Zinn-Indium-Legierungen.
Eine genaue Erklärung für den Mechanismus, der hinter diesem "Tröpfchentransport" steckt, konnten die Physiker allerdings noch nicht liefern. Zwar spielt der Temperaturgradient innerhalb des Röhrchens eine Rolle, aber die beobachtete Bewegung lässt sich mit einer reinen "Thermomigration" nicht erklären. Vielmehr vermutet die Gruppe, dass die lokal verschiedene Ausbildung eines elektrischen Feldes mit berücksichtigt werden müsse. "In einem Elektromigrations-Modell zählt der Elektronen-Transfer von den Indium-Atomen in das Nanoröhrchen und zeichnet für die beobachtete Transportrichtung verantwortlich", so Zettl.
Parallel zu diesem Ansatz eines Förderbandes glauben andere Nanoforscher, Kohlenstoffröhrchen wie eine Pipette nutzen zu können. Füllversuche verliefen teilweise schon erfolgreich. Doch Probleme zeigten sie beim gezielten "Abtropfen" der Nanopartikel aus der Röhre, da die Wechselwirkungen in der Röhre mit umgebenden Kohlenstoffatomen nicht zu vernachlässigen ist. Da Zettl und Kollegen die Nanoteilchen nur über die Oberfläche der Röhrchen "rutschen" lassen, treten solche Probleme hier nicht auf.
Jan Oliver Löfken
Weitere Infos:
- Originalveröffentlichung:
B. C. Regan et al., Carbon nanotubes as nanoscale mass conveyors, Nature 428, 924 (2004).
http://dx.doi.org/doi:10.1038/nature02496 - University of California, Berkeley:
http://www.berkeley.edu - Arbeitsgruppe Zettl:
http://www.physics.berkeley.edu/research/zettl/welcome.html - Hintergrund Nanoröhrchen:
http://www.pa.msu.edu/cmp/csc/nanotube.html - Spezielle Dokumente und Informationen zum Thema Nanoröhrchen finden Sie ganz einfach mit der Findemaschine, z. B. in der Kategorie Nanoröhren und -drähte.
Weitere Literatur:
- Eigler, D. M. & Schweizer, E. K., Positioning single atoms with a scanning tunnelling microscope, Nature 344, 524 (1990).
- Supple, S. & Quirke, N., Rapid imbibition of fluids in carbon nanotubes, Phys. Rev. Lett. 90, 214501.
- Gao, Y. H. & Bando, Y., Carbon nanothermometer containing gallium, Nature 415, 599 (2002).
- Ugarte, D., Chatelain, A. & deHeer,W. A., Nanocapillarity and chemistry in carbon nanotubes, Science 274, 1897(1996).
- Dai, H. J., Hafner, J. H., Rinzler, A. G., Colbert, D. T. & Smalley, R. E., Nanotubes as nanoprobes in scanning probe microscopy, Nature 384, 147(1996).