29.02.2012

Gold-Nanoantennen als Sensor für einzelne Proteine

Neue optische Methode zur Beobachtung von Protein-Molekülen mit Nanopartikeln aus Gold.

Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU) haben eine neue Methode entwickelt, um einzelne Proteine zu beobachten. Die genaue Kenntnis der Dynamik von Proteinen ist wichtig, um die biologischen Funktionen zu verstehen, die auf molekularer Ebene ablaufen. Bisher wurden dazu die Proteine mit fluoreszierenden Stoffen markiert. Dadurch verändert man aber das Untersuchungsobjekt und nimmt somit Einfluss auf den biologischen Prozess, den man beobachten möchte. „Unsere Methode erlaubt es erstmals, beliebige einzelne Proteine ohne Markierung live zu verfolgen“, sagt Carsten Sönnichsen vom Institut für Physikalische Chemie der JGU.

Abb.: Die neue Mainzer Methode ermöglicht es, im Mikroskop mit Hilfe eines Gold-Nanopartikels einzelne Protein-Moleküle zu beobachten (skizzierte Abbildung: Gold-Nanoantenne mit Protein-Molekülen in Lila). (Bild: Institut für Physikalische Chemie, JGU)

Die Methode der Mainzer Chemiker beruht auf dem Einsatz von Nanopartikeln aus Gold. Die funkelnden Nanoantennen können einzelne, nicht markierte Proteine aufspüren, an sie binden und verändern dann ein klein wenig die Resonanzfrequenz für elektromagnetische Strahlung, und damit die Farbe. Diese kleine Farbänderung ist mit der Mainzer Technik zu sehen. „Technisch gesehen ist das ein enormer Sprung: Wir haben bei der Beobachtung von einzelnen Molekülen eine extrem hohe zeitliche Auflösung erreicht“, so Sönnichsen. So kann der dynamische Vorgang bei der Anbindung eines Protein-Moleküls beispielsweise auf Millisekunden genau verfolgt werden.

Die Möglichkeit, einzelne Protein-Moleküle zu beobachten, eröffnet auch Wege, um völlig Neues anzugehen. So zum Beispiel die Fluktuation der Belegungsdichte zu verfolgen oder den Vorgang der Protein-Adsorption zeitlich aufzulösen. „Wir sehen, wie sich Moleküle bewegen, wie sie irgendwo andocken oder wie sich Protein-Moleküle falten, das ist ein Blick in die molekulare Welt“, erklärt Irene Ament aus der Arbeitsgruppe von Sönnichsen. Die neue Technik könnte nicht nur für die Chemie, sondern auch für die Medizin und Biologie von Bedeutung sein.

Die Arbeit ist im Zusammenhang des Exzellenzclusters Molecularly Controlled Non-Equilibrium (MCNE) ein wichtiger Baustein zur Erforschung von Nicht-Gleichgewichts-Phänomenen auf molekularer Ebene. Gefördert wurde sie unter anderem durch den ERC Starting Grant „Singlesens".

Das Forschungsgebiet von Sönnichsen „Metall-Nanopartikel als optische Sonden in biologischen Systemen“ ist in das Mainzer Exzellenzcluster MCNE integriert, das den Schritt in die abschließende Auswahlrunde der Bundesexzellenzinitiative geschafft hat.

JGU / PH

Anbieter des Monats

Edmund Optics GmbH

Edmund Optics GmbH

With over 80 years of experience, Edmund Optics® is a trusted provider of high-quality optical components and solutions, serving a variety of markets including Life Sciences, Biomedical, Industrial Inspection, Semiconductor, and R&D. The company employs over 1.300 people across 19 global locations and continues to grow.

Content Ad

Double-Pass AOM Clusters

Double-Pass AOM Clusters

Versatile opto-mechanical units that enable dynamic frequency control and amplitude modulation of laser light with high bandwidth, that can be combined with beam splitters, monitor diodes, shutters and other multicube™ components.

Meist gelesen

Themen