06.10.2017

Halle_Skyrmion

Halle

Nahezu alle modernen Speichermedien basieren auf Magneten und magnetischen Eigenschaften. Weil technische Geräte immer kleiner werden, müssen auch ihre Speicher weiter schrumpfen. Physiker der Martin-Luther-Universität Halle-Wittenberg und der Universität Stanford haben jetzt nachgewiesen, dass sich mit Hilfe von Elektronenstrahlen magnetische Strukturen auf extrem kleinen Nanoscheiben nutzen lassen, um Daten zu speichern.

Für ihre Arbeit stellten die Physiker Berechnungen zu speziellen magnetischen Phänomenen an, sogenannten Skyrmionen. "Das Besondere an diesen Quasiteilchen ist, dass sie sich in einem sehr stabilen, topologisch geschützten Zustand befinden und daher eine geringe Anfälligkeit gegenüber externen Einflüssen wie Temperaturen oder Erschütterungen aufweisen", sagt der Physiker Alexander Schäffer von der MLU, der bei Prof. Dr. Jamal Berakdar promoviert wird. Damit seien die Teilchen gute Kandidaten für moderne Speichermedien.

Doch diese Stabilität ist auch ein Nachteil: "Skyrmionen sind erst schwer zu erzeugen und dann auch schwer zu verändern", so Schäffer weiter. Der Physiker Prof. Dr. Hermann Dürr von der Universität Stanford, Ko-Autor der neuen Veröffentlichung, zeigte in einer früheren Studie, dass es grundsätzlich möglich ist, mit gezielten Elektronenstrahlen magnetische Strukturen und Domänen zu manipulieren und auch, welche Begrenzungen es dafür gibt. Speziell die hohe Geschwindigkeit, mit der die Manipulation der magnetischen Struktur erfolgt, setzt die neue Methode gegenüber der herkömmlichen Datenspeicherung ab.

Die halleschen Physiker wollten herausfinden, ob sich auf ähnliche Art und Weise auch Skyrmionen verändern lassen, sodass man damit Lese- und Schreib- oder Löschfunktionen wie bei einer Festplatte realisieren kann. Dazu stellten sie verschiedene Berechnungen an. Es zeigte sich, dass sich die Eigenschaften von Skyrmionen mit hochpräzisen, schnellen Elektronenstrahlen gut ändern lassen können. "Wir konnten nachweisen, dass Elektronenstrahlen gut dafür geeignet sind, Skyrmionen zu erzeugen, zu zerstören oder ihre magnetischen Eigenschaften zu verändern", fasst Schäffer zusammen. Die Berechnungen der halleschen Arbeitsgruppe könnten dabei helfen, Skyrmionen für neuartige Speichermedien nutzbar zu machen. Zunächst müssten die Ergebnisse aber experimentell und für größere Flächen überprüft werden.

Zur Publikation:
Appl. Phys. Lett. 111, 032403 (2017); doi: 10.1063/1.4991521

Anbieter des Monats

Edmund Optics GmbH

Edmund Optics GmbH

With over 80 years of experience, Edmund Optics® is a trusted provider of high-quality optical components and solutions, serving a variety of markets including Life Sciences, Biomedical, Industrial Inspection, Semiconductor, and R&D. The company employs over 1.300 people across 19 global locations and continues to grow.

Content Ad

Double-Pass AOM Clusters

Double-Pass AOM Clusters

Versatile opto-mechanical units that enable dynamic frequency control and amplitude modulation of laser light with high bandwidth, that can be combined with beam splitters, monitor diodes, shutters and other multicube™ components.

Meist gelesen

Themen