15.08.2014

Interstellarer Staubsauger

Stardust-Mission hat sehr unterschiedliche interstellare Staubpartikel zurück auf die Erde gebracht.

Der Raum zwischen den Sternen ist nicht leer, sondern angefüllt mit interstellarer Materie – Gas und Staubkörnchen. Doch Staub ist nicht gleich Staub: Ein internationales Team aus 33 Forschungseinrichtungen, darunter das Max-Planck-Institut für Chemie in Mainz, hat nun festgestellt, dass die Struktur und chemische Zusammensetzung von interstellaren Partikeln, welche die Stardust-Sonde eingesammelt hat, eine hohe Diversität besitzt.

Abb.: Der Pfeil deutet auf ein Partikel, das die Sonde Stardust aufgefangen hat (links). Daneben eine vergrößerte Aufnahme der Einschlagstelle. (Bild: A. Westphal et al.)

2006 war ein wichtiges Jahr für die Erforschung unseres Sonnensystems: Die NASA-Raumsonde Stardust brachte neben Kometenstaub auch kleinste Mengen an Material aus dem riesigen Raum zwischen den Sternen mit zur Erde. Wissenschaftlich bedeutsam ist dieser interstellare Staub aus mehreren Gründen: Er bricht das Licht von Sternen und lässt so Rückschlüsse auf die Größe des Universums zu. Außerdem liefert er das Rohmaterial für die Bildung von Sternen und Planeten und dient als Katalysator für die Entstehung von Molekülen.

Nun haben Forscher einer internationalen Gruppe aus den Proben von Stardust sieben Staubpartikel mit einer Gesamtmasse von wenigen Pikogramm identifiziert. Auch wenn Partikelzahl und -masse gering erscheinen, ist das außerirdische Material für Peter Hoppe vom Max-Planck-Institut für Chemie wissenschaftliches Neuland: „Es ist das erste Mal, dass wir neuzeitlichen interstellaren Staub auf der Erde untersuchen konnten.“ Bisher ließ sich das außerirdische Material nur indirekt über spektroskopische Beobachtungen analysieren. „Wir haben festgestellt, dass die Größe, die elementare Zusammensetzung und die Struktur der Partikel extrem unterschiedlich sind. Das hatten wir nicht erwartet“, sagt der Mainzer Forscher.

Dabei ist der Begriff neuzeitlich für Astrophysiker wie Hoppe relativ, da die durchschnittliche Lebensdauer eines Staubteilchens im interstellaren Raum bei etwa 500 Millionen Jahren liegt – im Vergleich zu unserem 4,6 Milliarden Jahre alten Sonnensystem ist das durchaus eine kurze Zeitspanne. Entgegen den Vorhersagen waren zwei Staubkörper kristallin und nicht amorph, also ohne geordnete Struktur der Atome. „Eine kristalline Struktur hatten wir bei höchstens zwei Prozent des Staubs erwartet“, sagt Jan Leitner aus dem Team von Peter Hoppe. Nach den bisherigen Theorien wird ein Großteil der kristallinen Körner nämlich im interstellaren Raum durch hochenergetische kosmische Strahlung und Schockwellen zerstört oder in amorphen Staub umgewandelt.

Abb.: Stardust auf dem Weg durchs All: Der ausgeklappte „Staubfänger” der Sonde ist auf dieser Illustration deutlich zu sehen. (Bild: NASA / JPL)

Um die Staubteilchen einzusammeln, war die Stardust-Sonde mit einem speziellen Partikelsammler ausgestattet: Auf der Sondenoberseite ragte ein tennisschlägergroßes rundes Gitter ins Weltall, das die Staubkörner auf der Oberfläche auffing. Die Streben des Gitters waren dabei mit einer Aluminiumfolie umwickelt. In den Zwischenräumen befand sich ein speziell entwickelter Glasschaum, der die Partikel beim Auftreffen bremste und somit ihre Struktur erhielt.

Die insgesamt sechsjährige Stardust-Mission gliederte sich in zwei Phasen, um Kometenstaub und Staub aus dem interstellaren Raum einzusammeln. Zunächst fing die Sonde auf der Vorderseite des Probensammlers innerhalb von 195 Tagen interstellaren Staub ein. Für den anschließenden Flug durch den Schweif des Kometen Wild 2 drehte die US-Raumfahrtagentur NASA den Sammler um 180 Grad, sodass diese Kometenkörner auf der Rückseite landeten.

Zurück auf der Erde, war das Aufspüren der Staubpartikel für die Wissenschaftler eine schier unlösbare Aufgabe, da sie den Staubfänger Mikrometer für Mikrometer nach Einschlägen absuchen mussten. Das entspräche einer Analyse von mehr als 1,5 Millionen Fotos des Glasschaums. Die Forscher wandten sich daher in einer bisher einzigartigen Aktion an die Öffentlichkeit und stellten die Fotos auf eine Webseite.

Ihrem Aufruf „Stardust@home“ folgten Tausende von Helfern und analysierten die Bilder anhand einer genauen Anleitung, um den begehrten Staub aufzuspüren. Die Helfer wurden dreimal fündig – ein schöner Erfolg, den die 66 Forscher zum Ausdruck brachten, indem sie in der Autorenliste der jetzigen Science-Publikation die 30.714 „Stardust@home dusters“ nennen. Insgesamt fand man bisher vier Staubkörnchen auf der Aluminiumfolie und drei im Glasschaum.

Das Team um Peter Hoppe konzentrierte sich dabei auf die Folie. Die Mainzer hatten von der NASA ein etwa 90 Quadratmillimeter großes Stückchen erhalten. „Das Absuchen der Folie war eine echte Sisyphusarbeit, weil wir dafür etwa 50.000 Bilder analysiert haben. Da die Staubkrater weniger als einen Tausendstel Millimeter klein sind, haben wir die Folie Stück für Stück mit dem Elektronenmikroskop angeschaut“, erinnert sich Jan Leitner.

Fündig wurde das Team insgesamt fünfmal. In vier Kratern steckte allerdings lediglich Abriebmaterial der Solarzellen der Sonde selbst. Eine Probe jedoch war tatsächlich außerirdisch und erhielt den unspektakulären Namen I1044N,3. Wie die chemische Analyse ergab, handelte es sich um ein magnesium- und eisenhaltiges Silikat.

Andere Proben enthielten neben Aluminium, Chrom, Mangan, Nickel und Kalzium auch Eisensulfid und elementares Eisen. Da sich diese Eisenformen in den Untersuchungen von der Erde aus nicht nachweisen ließen, bedeutet dies für die Forschergemeinschaft einen weiteren Erfolg ihrer zweijährigen Arbeit.

Auch wenn bisher nur ein kleiner Teil der Oberfläche des Stardust-Staubfängers abgesucht wurde, ist die Analyse des interstellaren Staubs für die Gruppe um Peter Hoppe zunächst einmal abgeschlossen. Die restlichen Proben stehen nun Wissenschaftlern aus aller Welt zur Verfügung, um weitere Partikel zu identifizieren und zu analysieren. Vielleicht ergeben diese Untersuchungen dann wieder neue Überraschungen.

MPIC / DE

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen