04.05.2022

Leichtbau mit vibroakustischen Metamaterialien

Neue Materialklasse beeinflusst das Schwingungsverhalten in Maschinen.

Im Maschinen- und Autobau treten oft Schwingungs­probleme auf. Forschende am Fraunhofer-Institut für Betriebs­festigkeit und System­zuverlässigkeit LBF entwickeln daher Anwendungen mit vibro­akustischen Metamaterialien für ein optimiertes struktur­dynamisches Verhalten. Vibro­akustische Metamaterialien können Schwingungen verringern und versprechen Vorteile im Schwingungs­verhaltens gegenüber konventionellen Maßnahmen. Zudem können sie wegen ihres geringen Gewichts die Energie­effizienz etwa von Fahrzeugen verbessern.

Abb.: Vibro­akustische Meta­materialien für schwingungs­dämpfenden...
Abb.: Vibro­akustische Meta­materialien für schwingungs­dämpfenden Leichtbau. (Bild: U. Raapke, Fh.-LBF)

Vibro­akustische Metamaterialien erzeugen Stoppbänder – Frequenz­bereiche, in denen keine freie Wellen­übertragung stattfindet – durch die Nutzung von Lokal­resonanzen. Die lokalen Resonatoren werden periodisch auf einer Grundstruktur angeordnet. Jeder Resonator stellt ein Feder-Masse-System dar, welches auf eine oder mehrere Resonanz­frequenzen abgestimmt ist. Durch das Schwingverhalten der Lokal­resonatoren werden negative effektive Masse­eigenschaften der Gesamtstruktur erzeugt. Es entsteht eine schwingungs­arme Leichtbau­struktur mit reduzierter akustischer Abstrahlung. 

In mehreren Projekten arbeiten Forschende des Fraunhofer LBF gemeinsam mit Partnern aus Wissenschaft und Industrie an der Entwicklung einer Design­systematik von Meta­materialien und an deren Modellierungen für die Simulation und Optimierung von Material­komponenten in einem virtuellen Fahrzeug­prototyp. Die Leichtbau- und Komfortwirkung werden anhand von Demons­tratoren in realen Fahrzeugen evaluiert. Aufgrund der geringen Größe der verwendeten Resonatoren lassen sich vibro­akustische Meta­materialien bei großer Design- und Gestaltungsfreiheit gut integrieren und mit im Fahrzeugbau bedeutsamen statischen, fahr­dynamischen und sicherheits­relevanten Auslegungs­anforderungen vereinbaren. Sie ermöglichen eine starke Reduktion von Schwingungen in einem breiten Frequenz­bereich bei gleichzeitig geringem Gewicht. So lässt sich der Zielkonflikt zwischen Leichtbau und Schwingungs- sowie Lärmbelastung lösen.

Fh.-LBF / JOL

Weitere Infos

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Meist gelesen

Themen