20.02.2013

„Mach es wie die Phasenuhr …“

Abbildung der Kreisbewegung von Ionen in einer Penningfalle verkürzt Messzeit für instabile Nuklide deutlich.

Präzisionsmessungen der Masse von Atomkernen haben in den letzten Jahren erheblich an Bedeutung für viele grundlegende Fragen der Physik gewonnen. Ein wichtiger Aspekt ist dabei die Bindungsenergie und damit verbunden die Stabilität der Kerne. Über die Bestimmung der Massendifferenz von Kern und der dain enthaltenen Nukleonen bekommt man direkt die Bindungsenergie des Atomkerns, die von großer Bedeutung ist für beispielsweise Untersuchungen zur Entstehung der Elemente im Universum oder die Stabilität superschwere Elemente.

Abb.: Schematischer Aufbau der Shiptrap-Falle mit ortsauflösendem Detektor zu Abbildung der Kreisbewegung des Ions (Bild: G. Otto, GSI / MPIK)

Eine besondere Herausforderung stellt die Massenmessung radioaktiver, also instabiler Nuklide dar, denn sie zerfallen oft kaum einen Wimpernschlag nach ihrer Erzeugung schon wieder. Untersuchen kann man sie daher nur an speziellen Beschleunigereinrichtungen, wo sie produziert werden. Und auch danach muss es entsprechend schnell gehen: Eine etablierte Technik ist der Einfang und die Speicherung instabiler Nuklide in Form einzelner Ionen in so genannten Penningfallen, wie sie in der Gruppe um Klaus Blaum am Heidelberger MPI für Kernphysik betrieben werden. Hier kreist das Ion in einem starken Magnetfeld und wird zusätzlich durch eine positive Spannung an zwei gegenüberliegenden Elektroden am Entweichen in Richtung der Achse der Kreisbewegung gehindert. Letztere ist durch die Zyklotronfrequenz eines geladenen Teilchens im Magnetfeld charakterisiert. Diese ist umgekehrt proportional zur Masse des Teilchens.

Zur Bestimmung der Frequenz bleibt bei kurzlebigen Nukliden wenig Zeit. Die Forscher verstärken daher zunächst mit einem elektrischen Hochfrequenzfeld die Kreisbewegung des Ions und lassen es dann durch Herunterschalten der Fallenspannung frei durch das Vakuum auf einen Detektor fliegen. Aus der Flugzeit lässt sich dann die Bewegungsenergie bestimmen. Der Verstärkungseffekt ist am größten, wenn die Hochfrequenz mit der Zyklotronfrequenz übereinstimmt, also Resonanz vorliegt. Die mit dieser bisher verwendeten Methode erzielte Genauigkeit liegt für Isotope mit wenigen 10-100 ms Halbwertszeit nun in der Größenordnung eines halben Umlaufs – vergleichbar mit dem Minutenzeiger einer Uhr, wenn ein Umlauf einer Minute entspricht. Genauere Uhren sind mit einem Sekundenzeiger ausgestattet. Diese Rolle übernimmt nun im Experiment das kreisende Ion selbst, man muss nur seine ‚Zeigerstellung‘ – die Phase der Kreisbewegung – abbilden.

Abb.: Abgebildete Kreisbewegung des Ions auf dem Detektor („Phasenuhr“) für verschiedene Stoppzeiten. Das Bild setzt sich aus einer großen Zahl von Einzelmessungen zusammen, die innerhalb weniger Minuten aufgenommen werden können. Die Umlaufzeit des Ions beträgt etwa eine Mikrosekunde. (Bild: MPIK)

Diese Idee haben nun die Heidelberger Physiker in Zusammenarbeit mit Kollegen der Universität Greifswald am GSI Helmholtzzentrum Darmstadt umgesetzt. Sie lassen das Ion nach Anregung durch einen Hochfrequenzpuls (Start) zunächst einige Zehntelsekunden kreisen und bilden es dann auf einen ortsempfindlichen Detektor ab (Stopp). Auf diese Weise können auch kleine relative Massendifferenzen sichtbar gemacht werden. Wie bei zwei Uhren, die ein klein wenig unterschiedlich schnell gehen, vergrößert sich im Laufe der Zeit der Zeigerabstand (Phasenwinkel). Dies führt zu einer 40-fach besseren Auflösung und einer bis zu fünfmal höheren Genauigkeit – ein Durchbruch in der Präzisions-Massenspektrometrie. Mit der neuen Methode kann man daher Massen bei gleicher Genauigkeit 25-mal schneller messen. Zur Demonstration untersuchten die Forscher zwei Xenon-Isotope mit den Massenzahlen 129 und 130 mit der Shiptrap-Apparatur an GSI Helmholtzzentrum Darmstadt und erreichten innerhalb weniger Minuten relative Massengenauigkeiten auf die neunte Nachkommastelle.

MPIK / OD

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Meist gelesen

Themen