Maßgeschneiderte Katalysatoren
Genau platzierte, einzelne Metallatome auf Metalloxid-Oberfläche zeigen gewünschtes Verhalten.
Sie machen unsere Autos umweltfreundlicher und sind in der chemischen Industrie unverzichtbar: Katalysatoren sind dazu da, bestimmte chemische Reaktionen zu ermöglichen, die sonst nicht oder nur sehr langsam ablaufen würden – etwa die Umwandlung von Kohlenmonoxid in Kohlendioxid in Autoabgasen. An der TU Wien haben Forscher nun wichtige Erfolge in der Oberflächenphysik erzielt, die eine neue Generation von Katalysatoren ermöglichen sollen: Metallatome können einzeln auf einer Metalloxid-Oberfläche platziert werden, sodass sie genau das gewünschte chemische Verhalten zeigen. Vielversprechende Ergebnisse mit Iridium-Atomen gibt es bereits, sie wurden nun publiziert.
Für Auto-Abgase verwendet man feste Katalysatoren, zum Beispiel aus Platin. Das Gas gerät in Kontakt mit der Metalloberfläche und kann dort chemisch mit anderen Gas-Komponenten reagieren. „Bei diesem Prozess können natürlich nur die äußeren Atome des Metalls eine Rolle spielen, weil das Gas die Atome im Inneren des Metalls gar nicht erreichen kann“, erklärt Gareth Parkinson vom Institut für angewandte Physik der TU Wien. Es ist daher sinnvoll, wenn das Katalysatormaterial nicht als einzelner großer Block, sondern in Form feiner Körnchen vorliegt, damit möglichst viele der Katalysator-Atome auch tatsächlich aktiv werden können. Nachdem viele wichtige Katalysatormaterialien ziemlich teuer sind – etwa Platin, Gold oder Palladium – schlägt sich das auch in den Kosten nieder.
Man versucht daher seit Jahren, das aktive Katalysatormaterial möglichst fein zu verteilen. Optimal wären Einzelatome, die alle genau auf die richtige Weise als Katalysatoren aktiv werden. Allerdings ist es extrem schwer, solche Einzelatome zu fixieren. „Wenn man Metallatome auf einer Oberfläche anlagert, haben sie meist eine sehr starke Tendenz, zu verklumpen und Nanopartikel zu bilden“, sagt Gareth Parkinson.
Eine andere Möglichkeit ist es, die aktiven Metallatome nicht auf einer Oberfläche anzubringen, sondern in ein kleines Molekül mit genau richtig ausgewählten Nachbaratomen einzubauen. So entsteht eine Katalysator-Flüssigkeit, die man mit flüssigen Substanzen mischt – nach der chemischen Reaktion muss man das Produkt dann vom Katalysator trennen.
Beide Varianten haben Vor- und Nachteile. Feste Metallkatalysatoren haben einen höheren Durchsatz. Man kann sie im Dauerbetrieb laufen lassen, ohne Katalysator und Produktsubstanzen immer wieder mühsam voneinander trennen zu müssen. Bei flüssigen Katalysatoren hingegen ist es einfacher, die Moleküle je nach Bedarf maßzuschneidern.
Parkinsons Team an der TU Wien gelang es nun, die Vorteile beider Varianten zu kombinieren: „Seit Jahren beschäftigen wir uns damit, Metalloxidoberflächen auf kontrollierte Weise zu bearbeiten und unter dem Mikroskop abzubilden“, sagt Gareth Parkinson. „Durch diese Erfahrung mit komplizierten oberflächenphysikalischen Problemstellungen gehören wir nun zu den ganz wenigen Labors auf der Welt, die Metallatome ganz gezielt in eine feste Oberfläche einbauen können.“
Ähnlich wie beim Design flüssiger Katalysatoren kann man sich nun exakt überlegen, welche Nachbaratome aus chemischer Sicht möglichst günstig sind – doch mit Hilfe spezieller oberflächenphysikalischer Tricks gelingt es, sie in eine feste Matrix einzubauen. Anhand von Iridium-Atomen auf einer speziellen Eisenoxid-Oberfläche konnte nun gezeigt werden: Zum einen lassen sich die Iridium-Atome so auf der Oberfläche fixieren, dass sie genau an Ort und Stelle bleiben, ohne sich zu größeren Partikeln zu vereinen, und zum anderen lässt sich die chemische Aktivität der Iridium-Atome anpassen – je nachdem, wie viele atomare Nachbarn sie an der Oberfläche haben. Das kann zum Beispiel genutzt werden, um Kohlenmonoxid zu Kohlendioxid umzuwandeln.
„Einzelatom-Katalyse auf Oberflächen ist ein neues, extrem vielversprechendes Forschungsgebiet“, sagt Gareth Parkinson. „Vereinzelt gab es bereits Messungen mit solchen Katalysatoren – allerdings war der Erfolg bisher eher vom Zufall bestimmt. Wir haben nun erstmals die volle Kontrolle über die atomaren Eigenschaften der Oberfläche und können das anhand von Bildern aus dem Elektronenmikroskop auch ganz klar nachweisen.“
TU Wien / DE