25.05.2016

Mit atomarer Präzision

Technologien für die übernächste Chipgeneration.

Im Projekt „Beyond EUV“ entwickeln die Fraunhofer-Institute für Lasertechnik ILT in Aachen und für angewandte Optik und Feinmechanik IOF in Jena wesentliche Technologien zur Fertigung einer neuen Generation von Mikrochips mit EUV-Strahlung bei 6,7 nm. Die Strukturen sind dann kaum noch dicker als einzelne Atome und ermöglichen besonders hoch integrierte Schaltkreise zum Beispiel für Wearables oder gedankengesteuerte Prothesen.

Abb.: Die EUV-Strahlung zur Belichtung der Halbleiterstrukturen wird üblicherweise erzeugt, indem ein kW-Laserstrahl auf ein Jet aus flüssigen Metalltröpfchen im Vakuum fokussiert wird. Das Foto zeigt ein entladungs-basiertes Plasma. (Bild: Fh-ILT)

Gordon Moore formulierte 1965 das später nach ihm benannte Gesetz, wonach sich alle ein bis zwei Jahre die Komplexität integrierter Schaltungen verdoppelt. Er galt damals als Visionär und Vordenker. Heute sind wir über 50 Jahre weiter und sehen, dass die Integrationsdichte elektronischer Schaltkreise immer noch weiter wächst.

Inzwischen können wir ganze Bibliotheken auf einem Chip im Smartphone speichern. Möglich wurde das vor allem durch revolutionäre Fortschritte in den optischen Technologien und in der Materialwissenschaft. Und obwohl physikalische Grenzen sichtbar werden, ist die Entwicklung noch nicht am Ende: Wissenschaftler an Fraunhofer-Instituten in Jena und Aachen arbeiten an der nächsten Technologiestufe für noch kleinere Strukturen.

Ein entscheidender Parameter für die lithografische Erzeugung immer kleinerer Strukturen ist die verwendete Lichtwellenlänge. In den siebziger Jahren reichte das UV-Licht einer Quecksilberdampflampe, in den Neunzigern kamen Excimerlaser bei 193 nm dazu. Mit diesen Strahlquellen und ausgefeilten Methoden der optischen Lithografie werden heute Strukturgrößen von bis zu 14 nm industriell gefertigt.

In den letzten 10 Jahren wurde mit der EUV-Lithografie eine völlig neue Technik entwickelt, die bei einer Wellenlänge von 13,5 nm arbeitet. Dafür wird ein Zinntröpfchen mit einem Hochleistungslaser beschossen, die entstehende Strahlung im Extrem-UV (EUV) soll in den nächsten Jahren Strukturgrößen von 10 nm und darunter ermöglichen.

Wissenschaftler am Fraunhofer ILT haben an der EUV-Technologie maßgeblich mitgearbeitet und konzentrieren sich jetzt auf den nächsten Schritt: Die Technologie für Strahlung von etwa 6,7 nm Wellenlänge. Statt mit Zinn arbeiten sie mit Targets aus Gadolinium- oder Terbiumlegierungen, die entsprechend kürzere Wellenlängen ermöglichen.

Zur Charakterisierung der Strahlquelle wurde gemeinsam von Teams beider Fraunhofer-Institute ein neues Optiksystem entwickelt. Damit lassen sich Parameter wie die Lichtleistung räumlich und spektral hochaufgelöst messen.
Die Strahlquelle produziert inzwischen genügend Leistung, um damit Versuche an neuen Spiegelschichten oder lichtempfindlichen Lacken (Resists) zu unternehmen. Für die nötige Leistungsskalierung wird sie kontinuierlich weiterentwickelt.

Im Unterschied zur klassischen optischen Lithografie arbeitet die EUV-Lithografie ausschließlich mit reflektiver Optik, wobei die Spiegel extrem hohen Anforderungen gerecht werden müssen. Die Dicke der Spiegelschichten muss inzwischen im Bereich von 10 Pikometern stimmen. Das ist weniger als ein Atomdurchmesser.

Abb.: Am Fraunhofer IOF in Jena werden Spiegelschichten mit atomarer Präzision – hier ein mit Gold beschichteter für das Ritchie-Chrétien-Teleskop der Transportablen Optischen Bodenstation (TOGS) des DLR Oberpfaffenhofen – hergestellt. (Bild: Fh-IOF)

Die Erzeugung der EUV-Strahlung ist aufwändig und teuer, entsprechend zählt jedes Prozent an Reflektivität. Bei den Spiegeln für 13 nm konnte mit Silizium- und Molybdänschichtsystemen etwa 65% Reflektivität erreicht werden. Für 6,7 nm haben die Experten vom Fraunhofer IOF in Jena spezielle Systeme aus Lanthan- und Borverbindungen entwickelt. Und auch hier kämpfen sie darum, die theoretische Grenze von etwa 70% zu erreichen.

Deshalb arbeiten die Experten der Fraunhofer-Institute für Angewandte Optik und Feinmechanik IOF und für Lasertechnik ILT seit Anfang 2014 daran, die Grundlagen für Lithografieverfahren bei noch kürzeren Wellenlängen zu erarbeiten. Begleitet durch Industriepartner von Carl Zeiss SMT und ASML arbeiten Sie im Projekt „Beyond EUV“ noch bis Ende 2016 an der Entwicklung von wesentlichen Komponenten für die Technologie bei 6,7 nm.

Mit den neuen Lithografietechnologien werden Strukturen mit der Dicke von wenigen Atomen möglich. Für Schaltkreise aus solchen Strukturen gibt es schon heute viele Ideen: Neben noch höheren Speicherkapazitäten für Cloudanwendungen und Big-Data-Prozesse könnten sie auch für gedankengesteuerte Prothesen oder eine stärker personalisierte Medizin genutzt werden.

ILT / LK

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen