22.07.2015

Organisch magnetisiert

Dünne Schicht organischer Moleküle bestimmt magnetische Ausrichtung auf Oberfläche von Metallen.

Organische Moleküle ermöglichen druckbare Elektronik und Solarzellen mit außer­gewöhnlichen Eigenschaften. Auch in der Spin­tronik eröffnen die Moleküle die unerwartete Möglich­keit, den Magnetismus von Materialien und damit den Spin der fließenden Elektronen zu beein­flussen. So kann eine dünne Schicht von organischen Molekülen die magnetische Ausrichtung einer Kobalt-Ober­fläche stabili­sieren, wie ein deutsch-französisches Team von Forschern des KIT, der Universität Strasbourg und des Synchrotrons Soleil berichtet.

Abb.: Die drei organischen Moleküle und die Kobalt-Oberfläche richten ihre magnetischen Momente sehr stabil aufeinander aus. (Bild: M. Gruber, KIT)

„Diese ungewöhnliche Wechselwirkung zwischen organischen Molekülen und Metall­ober­flächen könnte helfen, Infor­mations­speicher einfacher, flexibler und günstiger herzustellen“, erklärt Wulf Wulfhekel vom KIT. So werden etwa in Computer­fest­platten auch mikroskopische Magnete mit konstanter Ausrichtung verwendet. Organische Moleküle unter dem Stichwort „druckbare Elektronik“ könnten hier neue, einfache Produktions­prozesse eröffnen, die die Selbst­organi­sation der Moleküle ausnutzen.

In der aktuellen Studie wurden drei Molekül-Lagen des Farbstoffs Phtalo­cynine auf die Oberfläche des Ferro­magneten Kobalt aufgebracht. Die magnetischen Momente der Moleküle richteten sich zum Kobalt und zueinander alter­nierend aus, die Moleküle bildeten eine anti­ferro­magne­tische Anordnung. Diese Kombination aus Anti­ferro­magneten und Ferro­magneten bewahrt ihre magnetische Ausrichtung recht stabil auch unter externen Magnet­feldern oder Abkühlung.

„Überraschenderweise gewinnt hier das ‚leichtgewichtige‘ Molekül das magnetische Arm­drücken mit dem ‚schwergewichtigen‘ Ferromagneten und gibt die Eigenschaften vor“, so Wulfhekel. Systeme aus Anti­ferro­magneten und Ferro­magneten kommen unter anderem im Lesekopf von Festplatten vor. Bislang ist die Herstellung des Anti­ferro­magneten recht aufwendig. Sollten sich Moleküle hier einsetzen lassen, könnten die Anti­ferro­magneten eines Tages einfach aus dem Drucker kommen.

KIT / DE

Content Ad

Auf der Suche nach dem besten Signal-Rausch-Verhältnis?

Auf der Suche nach dem besten Signal-Rausch-Verhältnis?

Bringen Sie Ihre Messungen auf ein neues Level - wie weltweit bereits mehr als 1000 Labore vor Ihnen. Der MFLI Lock-In Verstärker setzt Maßstäbe in der Signalanalyse und in einem herausragenden Signal-Rausch-Verhältnis.

Anbieter des Monats

SmarAct GmbH

SmarAct GmbH

Mit der Entwicklung und Produktion von marktführenden Lösungen im Bereich hochpräziser Positioniertechnik, Automatisierungslösungen und Metrologie begleitet die SmarAct Group ihre Kunden zuverlässig bei der Realisierung ihrer Ziele.

Meist gelesen

Themen