02.11.2015

Quantenphänomen könnte Effizienz von Solarzellen verdoppeln

Erstmals Singulett-Spaltung in Echtzeit beobachtet.

Trifft ein Photon auf ein Molekül und wird dort absorbiert, so hebt es in diesem Molekül ein Elektron auf ein höheres Energieniveau. Dieser Zustand höherer Energie wird als „Singulett-Exziton“ bezeichnet. Auf dem Weg zurück in seinen ursprünglichen, niedrigeren Energiezustand kann das Elektron über einen äußeren Stromkreis abgeführt werden – es entsteht elektrischer Strom. In einigen wenigen Fällen ist es möglich, dass ein Molekül seine überschüssige Energie benutzt, um ein zweites Molekül in einen angeregten Zustand zu versetzen. Im Anschluss an diesen Prozess befindet sich dann je ein Elektron in den beiden Molekülen auf einem höheren Energieniveau. Diese Zustände bezeichnet man als „Triplett-Exzitonen“. Insgesamt kann ein Lichtteilchen also zwei angeregte Elektronen erzeugen, die wiederum zur Erzeugung von elektrischem Strom verwendet werden können – für die Solartechnik ist dieser Vorgang hochinteressant.

Da die Singulett-Spaltung in Femtosekunden abläuft, ist sie jedoch sehr schwer zu beobachten und zu erklären – und folglich schwer zu kontrollieren. Ein internationales Forschungsteam der Unis Cambridge, Lund und Kiel, sowie des Forschungsinstitutes AMOLF in Amsterdam ist letzterem nun näher gekommen. Denn die Wissenschaftler haben herausgefunden, was genau bei dem Phänomen vor sich geht. Sie bestrahlten Pentacen-Moleküle mit ultrakurzen Femtosekunden-Laserimpulsen, um zu sehen, ob sich einzelne Photonen in zwei energetisch angeregte Elektronen umwandeln können. Das Ergebnis: Die „zwei für eins“-Umwandlung beinhaltet einen Zwischenzustand, in dem die beiden Triplett-Exzitonen ineinander verschränkt sind.

„Das Hauptproblem bei der Echtzeit-Beobachtung der Singulett-Spaltung ist, dass die verknüpften Triplett-Exzitonen für fast alle optischen Abtastungen dunkel sind“, sagt Dassia Egorova von der Uni Kiel. „Das heißt, dass sie nicht direkt durch Licht erzeugt oder vernichtet werden können und somit nicht nachweisbar sind.“ Um das zu umgehen, haben die Forscher das zwei-dimensionale Photonen-Echo-Signal in einem weltweit führenden Labor in Lund gemessen. Angeführt von Egorovas Kieler Team konnten sie anschließend ein erklärendes Modell entwickeln. Es beweist, dass Pentacen-Moleküle, die von Laserimpulsen zur Vibration angeregt werden, ihre Form verändern. Das führt dazu, dass das verschränkte Triplett-Paar kurzzeitig in der Lage ist, Licht zu absorbieren und damit nachweisbar wird. „Das Modell erklärt, dass die Moleküle durch das Vibrieren neue Quantenzustände besitzen, die gleichzeitig die Eigenschaften sowohl des lichtabsorbierenden Singulett-Exzitons, als auch die des dunklen Triplett-Paars haben“, sagt Egorova. Zwei entgegengesetzte Zustände also, die in der Quantentheorie als „Superpositionen“ beschrieben werden.
Die Entdeckung könnte dazu führen, die Singlett-Spaltung kontrollierbar zu machen. Neuartige, hoch-effiziente Solarzellen könnten dann doppelt so viel Strom aus einfallendem Licht erzeugen wie bisherige Solarzellen.

CAU / RK

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen