Plasmen könnten für viele medizinischen Anwendungen interessant sein, etwa für die Wundheilung oder zum Abtöten antibiotikaresistenter Keime. Unterschiedliche Plasmen kommen dabei für unterschiedliche Anwendungen infrage, denn entscheidend ist, welche reaktiven Teilchen sich im Plasma befinden. Die Verteilung der reaktiven Sauerstoffatome in einem weit verbreiteten Plasma, dem sogenannten COST-Jet, haben Forscherinnen und Forscher der Ruhr-Universität Bochum (RUB) im Sonderforschungsbereich 1316 untersucht. Sie waren auch an der Entwicklung dieser Plasmaquelle beteiligt, die mittlerweile an vielen Forschungsstandorten als Referenzplasma im Einsatz ist.
Welche reaktiven Teilchen in einem Plasma enthalten sind, hängt unter anderem von der Gasmischung ab, aus der ein Plasma entsteht. Ist Sauerstoff enthalten, kann er im Plasma beispielsweise als positiv (O+) oder negativ geladenes Ion (O-), als neutrales Atom (O), als molekularer Sauerstoff (O2) oder Ozon (O3) vorliegen.
„Viele biologische Systeme benötigen eine gewisse Menge Sauerstoff, sodass Plasmabehandlungen mit reaktiven Sauerstoffspezies positive Effekte haben können“, erklärt Judith Golda vom Lehrstuhl für Experimentelle Physik, insbesondere Plasma-Grenzflächenphysik. „Manchmal kann es aber auch zu viel Sauerstoff sein.“ Daher sei es wichtig zu wissen, wie viel reaktiver Sauerstoff genau im Plasma vorliegt und wie die optimale Entfernung von der zu behandelnden Oberfläche zum Plasma wäre. „Nur so kann man später Anwendungen entwickeln, die auch sicher für Patientinnen und Patienten sind“, so die Physikerin.
Die erforderlichen Messungen erfolgten mittels Spektroskopie. Dabei schicken die Forscherinnen und Forscher Laserlicht einer bestimmten Wellenlänge in das Plasma. Dieses Licht wird von den Sauerstoffteilchen absorbiert, wodurch sie auf ein höheres Energieniveau gehoben werden. Nach einer Weile kehren sie in den Grundzustand zurück; dabei strahlen sie Licht einer bestimmten Wellenlänge aus, welches die Forschenden messen können. Die emittierte Wellenlänge hängt dabei von dem Teilchen ab, das das Licht aussendet; ein neutrales Sauerstoffatom schickt etwa anderes Licht zurück als ein positiv geladenes Sauerstoffion. Aus der Menge des abgestrahlten Lichts bestimmter Wellenlängen können die Wissenschaftlerinnen und Wissenschaftler somit auf die Menge verschiedener Sauerstoffspezies zurückschließen.
Auf diese Weise stellte das Team fest, dass die Menge der Sauerstoffatome im Plasma exponentiell mit der Entfernung zur Quelle abnimmt. Mit analytischen Modellen zeigten sie auch die Gründe dafür. „Weil die Teilchen so reaktiv sind, reagieren sie schnell zu anderen Verbindungen weiter, etwa zu molekularem Sauerstoff oder Ozon“, schildert Judith Golda.
Das COST-Jet-Plasma entwickelten die Bochumer Forscherinnen und Forschern gemeinsam mit Teams aus Greifswald, Eindhoven, Milton Keynes, York und Dublin. Ziel war ein Plasma, dessen Eigenschaften genau charakterisiert sind und das sich mit genau diesen Eigenschaften reproduzierbar herstellen lässt. Denn was genau ein Plasma in einer bestimmten Anwendung bewirkt, hängt von den speziellen Plasmaparametern ab, etwa seiner Zusammensetzung. Viele Forschungsgruppen weltweit nutzen mittlerweile den COST-Jet, sodass die Ergebnisse dieser Gruppen gut vergleichbar sind.
RUB / LK
Weitere Infos