22.01.2007

Roter als Rot

Ein phosphoreszierender Platin-Porphyrin-Komplex eignet sich als neuer Dotierstoff für hocheffiziente Infrarot-Leuchtdioden.



Ein phosphoreszierender Platin-Porphyrin-Komplex eignet sich als neuer Dotierstoff für hocheffiziente Infrarot-Leuchtdioden.

Mehr und mehr wird die konventionelle anorganische Halbleiter-Elektronik durch organische Bauelemente ergänzt. Biegsame Displays, großflächige Leuchtanzeigen oder Flachbildschirme lassen sich z. B. mit organischen Leuchtdioden (OLEDs) verwirklichen. Wurde bisher fast ausschließlich an OLEDs geforscht, die im sichtbaren Bereich des Spektrums leuchten, haben sich amerikanische Forscher um Mark E. Thompson nun an OLEDs gemacht, die Licht im nahen Infrarot abstrahlen. Solche Dioden werden für Anzeigen benötigt, die mit Nachtsichtgeräten abgelesen werden sollen. In der Zeitschrift Angewandte Chemie lüftet das Team aus Wissenschaftlern von der University of Southern California, der Princeton University, der University of Michigan sowie der Universal Display Corporation sein Erfolgsgeheimnis: ein phosphoreszierender Platin-Porphyrin-Komplex als Dotierstoff.

Eine OLED ist ein dünnes, leuchtendes Bauelement aus organischen halbleitenden Materialien, dessen Aufbau dem einer anorganischen Leuchtdiode (LED) ähnelt. Zwischen zwei Elektroden sowie weiteren Schichten befindet sich eine farbstoffhaltige Emitterschicht. Bei Anlegen einer Spannung pumpt die Kathode Elektronen, die Anode Elektronenleerstellen, so genannte „Löcher“ in die Emitterschicht. Der Farbstoff gerät dadurch in einen angeregten Zustand. Wenn die Farbstoffmoleküle wieder in den Grundzustand zurückfallen, wird die freiwerdende Energie als Licht abgestrahlt. Bisher wurde die Emitterschicht von OLEDs mit Fluoreszenzfarbstoffen dotiert. Von phosphoreszierenden Dotierstoffen verspricht man sich nun deutlich effizientere OLEDs. Phosphoreszenzfarbstoffe leuchten wesentlich länger nach, da sie in ihrem angeregten Zustand regelrecht „gefangen“ sind und nicht so leicht wieder in den Grundzustand gelangen können.

Welche Farbe das emittierte Licht hat, hängt davon ab, wie groß der energetische Abstand zwischen den beiden Energieniveaus ist. Dies hängt wiederum von der genauen Struktur des Farbstoffmoleküls ab. Mark E. Thompson und sein Team wählten einen Platin-Porphyrin-Komplex als phosphoreszierenden Dotierstoff. Porphyrine kommen z. B. in unserem roten Blutfarbstoff und im grünen Blattfarbstoff vor. Das Grundgerüst der Porphyrin-Komplexe besteht aus vier stickstoffhaltigen Fünfringen, die zu einem größeren Ring miteinander verknüpft sind. In dessen Mitte sitzt das Metallatom – im konkreten Fall ein Platinatom. Die weiteren molekularen Details wählten die Forscher so, dass ihr sattelförmiges Porphyrin Licht im infraroten Bereich abstrahlt. Und das sehr effizient, wenn es in die Emitterschicht einer OLED eingelagert wird.

Quelle: Angewandte Chemie

Weitere Infos:

Veranstaltung

Spektral vernetzt zur Quantum Photonics in Erfurt

Spektral vernetzt zur Quantum Photonics in Erfurt

Die neue Kongressmesse für Quanten- und Photonik-Technologien bringt vom 13. bis 14. Mai 2025 internationale Spitzenforschung, Industrieakteure und Entscheidungsträger in der Messe Erfurt zusammen

Content-Ad

Park FX200 | Das fortschrittlichste AFM für 200-mm-Proben

Park FX200 | Das fortschrittlichste AFM für 200-mm-Proben

Das Park FX200 ist ideal für Forschung und Industrie zur automatisierten Messung von bis zu 200mm großen Proben und bietet bedeutende Fortschritte in der AFM-Technologie

Meist gelesen

Themen