30.07.2025

Skyrmionen in die Tasche gepackt

Einem Forschungsteam aus Berlin, Augsburg und Luxemburg ist es gelungen, komplexe magnetische Texturen in dünnen ferromagnetischen Schichten kontrolliert zu erzeugen.

Magnetische Skyrmionen sind nanometergroße, stabile Wirbel in der Magnetisierung mit vielversprechenden Anwendungen in der Spintronik und Datenspeicherung. Ihre einfachsten Formen wurden bereits umfassend erforscht und haben eine runde Gestalt, wobei die Spins von außen nach innen um 180° rotieren. Die Spins im Zentrum sind also entgegengesetzt zu denen außerhalb ausgerichtet. Komplexere Konfigurationen umfassen das Skyrmionium, bei dem sich die Spins um 360° drehen. Die Spins im Zentrum des Skyrmioniums haben also die gleiche Ausrichtung wie außerhalb, was zu einer ringförmigen Struktur führt. Bemerkenswert ist, dass dieser Ring dann wieder mit Skyrmionen gefüllt werden kann, was bei einem Skyrmion im Inneren als Target-Skyrmion (engl. für Ziel-Skyrmion) bezeichnet wird, bei mehreren Skyrmionen im Inneren als Skyrmion-Bag. Obwohl solche Konfigurationen höherer Ordnung bereits theoretisch vorhergesagt wurden, war ihre kontrollierte Erzeugung in realen Materialien bislang kaum möglich.

Röntgenmikroskopische Aufnahmen der Magnetisierungstexturen
Röntgenmikroskopische Aufnahmen der Magnetisierungstexturen, die die verschiedenen Ordnungen von Skyrmionen-Bags zeigen, vom leeren Skyrmionium bis zu einem mit vier Skyrmionen gefüllten Bag. Der Maßstabsbalken beträgt 500 nm.
Quelle: L.-M. Kern et al. / MBI

In einer neuen Studie, zeigt das Team, wie gezielte nanoskalige Modifikationen der magnetischen Eigenschaften des Materials, die durch fokussierte Helium-Ionenbestrahlung eingebracht werden, die Entstehung dieser komplexen Spinstrukturen ermöglichen. Diese lokalen Änderungen der magnetischen Anisotropie sind so gestaltet, dass sich die gewünschten Skyrmion-Bags gezielt mit einzelnen ultrakurzen Laserpulsen erzeugen lassen.

Die Bildung von Skyrmion-Bags durch Laserschüsse wird durch das Design des Anisotropiepotentials ermöglicht
Die Bildung von Skyrmion-Bags durch Laserschüsse wird durch das Design des Anisotropiepotentials ermöglicht, symbolisiert durch die Muffinform. Sobald das Rezept entwickelt ist, können die Texturen problemlos „gebacken“ werden (Quelle: )

Die resultierenden magnetischen Texturen mit Strukturen im Größenbereich unter hundert Nanometern wurden mit einem hochauflösenden Röntgenmikroskop direkt sichtbar gemacht, das mit einem eigens am Max-Born-Institut entwickelten Lasersystem ausgestattet ist. Die Forschenden zeigen die Erzeugung verschiedenartiger Skyrmion-Bags, vom leeren Skyrmionium bis hin zu Bags, die mit vier Skyrmionen gefüllt sind.

Dabei zeigte sich, dass die laserinduzierte Erzeugung deutlich erfolgreicher und reproduzierbarer ist als ein Ansatz, der allein auf einem angelegten Magnetfeld basiert. Die wiederholbare und konsistente Erzeugung dieser Strukturen ist eine entscheidende Voraussetzung für künftige zeitaufgelöste Experimente zur Untersuchung der Dynamik dieser Skyrmionen höherer Ordnung. Die Arbeit eröffnet einen praktischen Weg, um komplexe Skyrmionen-Zustände in dünnen magnetischen Materialien gezielt zu untersuchen und anzuwenden, was einen wichtigen Schritt in Richtung zukünftiger spintronischer Bauelemente darstellt, die topologische Kontrolle im Nanobereich nutzen. [MBI / dre]

Anbieter

Max-Born-Institut (MBI) im Forschungsverbund Berlin e.V.

Max-Born-Straße 2A
12489 Berlin
Deutschland

Kontakt zum Anbieter







Content Ad

Double-Pass AOM Clusters

Double-Pass AOM Clusters

Versatile opto-mechanical units that enable dynamic frequency control and amplitude modulation of laser light with high bandwidth, that can be combined with beam splitters, monitor diodes, shutters and other multicube™ components.

Anbieter des Monats

Edmund Optics GmbH

Edmund Optics GmbH

With over 80 years of experience, Edmund Optics® is a trusted provider of high-quality optical components and solutions, serving a variety of markets including Life Sciences, Biomedical, Industrial Inspection, Semiconductor, and R&D. The company employs over 1.300 people across 19 global locations and continues to grow.

Meist gelesen

Themen