Unrunde Sternentstehung
Asymmetrische Gasströme beginnen außerhalb der Scheibe um einen jungen Stern.
Zum ersten Mal hat ein internationales Team von Astronomen unter Leitung des Max-Planck-
Abb.: CO-Moleküllinien, einer Aufnahme der Staubemission überlagert. Das Bild auf der linken Seite zeigt Material, das sich auf uns zubewegt (blauer Flügel), während das Bild rechts die Bewegung von uns weg zeigt (roter Flügel). (Bild: MPE)
Ein lange bekanntes Problem bei der Sternentstehung besteht darin, den Überschuss an Drehimpuls loszuwerden, der durch das einfallende Material in die molekulare Wolke eingebracht wird, in der ein junger Stern geboren wird. Im klassischen Bild wird der Drehimpuls sowohl durch einen stellaren Wind nahe des neu gebildeten Sterns als auch durch einen Scheibenwind aus einer weiten Region in der protoplanetaren Scheibe aus dem System entfernt. Die genaue Position, von der aus solche Scheibenwinde gestartet werden, ist jedoch unbekannt.
Junge Stellare Objekte (YSOs, young stellar objects) mit niedrigen Massen, die Vorläufer von sonnenähnlichen Sternen, haben eine prominente Scheibe rund um den Protostern, die wiederum von einer dünnen Hülle umgeben ist. Die Struktur und die Kinematik der Umgebung solcher jungen Sterne können durch Radiostrahlung untersucht werden, da der Staub in Scheibe und Hülle in diesem Bereich thermische Strahlung aussendet und Rotationsübergänge einiger einfacher Moleküle, wie zum Beispiel CO, Rückschlüsse auf die Bewegung des molekularen Gases zulassen. Ein internationales Team von Astronomen, angeführt vom Max-Planck-
„Unsere Messung der Kontinuumsemission zeigen einen noch nie da gewesenen Blick auf die Staubverteilung rund um den jungen Stern“, betont Felipe O. Alves von MPE, Hauptautor der zugehörigen Veröffentlichung. „Wir konnten einen erhöhten Helligkeitskontrast zwischen der Scheibe rund um dem Stern und dem umliegenden dünnen Material erreichen – wir sehen sogar Spiralstrukturen.“
Noch eindrucksvoller sind jedoch die Beobachtungen der Moleküllinien: Sie zeigen einen bipolaren Ausfluss, der an symmetrischen Positionen in Bezug auf die Scheibe in ziemlich großer Entfernung vom Zentrum gestartet wird. Dies ist das erste Mal, dass Forscher das Ausflussmaterial beobachten, das nicht von der Scheibe selbst abfließt, sondern außerhalb von deren Rand.
Der große Abstand der Startposition fällt mit dem Auftreffpunkt des einfallenden Materials aus der umgebenden Wolke zusammen, das mittels der Spektrallinien von Formaldehyd identifiziert werden konnte. „Moleküle sind wertvolle Werkzeuge, um selektiv verschiedene Bereiche der komplexen Regionen, in denen sonnenähnliche Sterne geboren werden, zu untersuchen. Sie enthüllen wichtige physikalische Prozesse“, sagt Paola Caselli, Koautorin der wissenschaftlichen Veröffentlichung.
Modelle sagen voraus, dass die Magnetfeldlinien am Auftreffpunkt stark zusammengezogen werden, da sie vom einfallenden Gas aus der inneren Hülle „mitgeschleppt“ werden. Das daraus resultierende erhöhte Magnetfeld ermöglicht Ausflüsse, die in einem schmalen Bereich außerhalb des Scheibenrandes effizient durch einen kombinierten magnetisch-
Die enge Verbindung zwischen dem ein- und ausströmenden Gas wird auch durch die Asymmetrie unterstützt, die in beiden Beobachtungen nachgewiesen wurde. „Die hochauflösenden Daten erlauben es uns, einen scharfen Übergang in der Gaskinematik der Spiralstruktur zu identifizieren. Dieser bezeichnet die Lage der sogenannten Zentrifugalbarriere, an der das Gas in der Scheibe landet und nur eine Rotationsbewegung übrig bleibt“, sagt Alves. Dieser Auftreffpunkt des einfallenden Gases auf die Scheibe ist asymmetrisch; daher sollten auch die bipolaren Abflüsse asymmetrisch sein – im Gegensatz zum klassischen Bild eines Scheibenwindes.
MPE / DE