Warum Tropfen tropfen
Energieverteilung in Nanotröpfchen direkt gemessen.
Wasser bedeckt über zwei Drittel unserer Erde und bildet den Grundstoff für das Leben. Es ist allgegenwärtig und birgt doch immer noch viele Geheimnisse. Eine französische Forschungsgruppe um Michel Farizon von der Universität Lyon hat nun mit Unterstützung von Tilmann Märk von der Universität Innsbruck neue Erkenntnisse über die Bindungseigenschaften von Wasser veröffentlicht. Grundlage dafür war eine neue experimentelle Anordnung, die es den Forschern ermöglichte, Verdampfungsvorgänge in winzigen Wassertröpfchen einzeln und im Detail zu beobachten.
„Was hier in der Molekülchemie gemacht wurde, ist vergleichbar mit dem, was in den Teilchenbeschleunigern am CERN passiert “, sagt der Ionenphysiker Tilmann Märk. „Im Labor werden ionisierte Kleinstwassertröpfchen von genau definierter Größe erzeugt, auf hohe Energie beschleunigt und mit anderen Teilchen zur Kollision gebracht. Dabei wird Energie auf die Wassermoleküle übertragen, und dies führt letztlich zu einem Zerfall dieser Tröpfchen.“ Die Gruppe um Michel Farizon war nun mittels eines neuartigen Massenspektrometers in der Lage, die einzelnen Ereignisse genau zu beobachten und zu analysieren. „Das ist einzigartig in der Molekülphysik“, ist Märk begeistert. „Meine Kollegen in Lyon sehen ganz genau, in welche Bruchstücke die Wassertröpfchen jeweils zerfallen und welche Geschwindigkeiten die entstandenen Bruchstücke dabei haben. Daraus lässt sich wiederum ermitteln, wie die Energie vor dem Zerfall in den Tröpfchen verteilt war.“
Wie die Messergebnisse zeigen, verteilt sich auch in sehr kleinen Wassertröpfchen aus zwei bis acht Molekülen die bei Kollisionen aufgenommene Energie sehr rasch über alle Teilchen. Diese für makroskopische Wassertropfen typische Maxwell-Boltzmann-
„Diese Messungen liefern uns einen tiefen Einblick in die Eigenschaften von Wasserstoffbrückenbindungen, die die Wassertröpfchen im Innersten zusammenhalten bzw. für den Energietransfer innerhalb der Tröpfchen verantwortlich sind“, resümiert Tilmann Märk zufrieden. Diese Erkenntnisse sind unter anderem für die Atmosphärenchemie, die Astrochemie und die Biologie, wo solche Prozesse eine wichtige Rolle spielen können, von großem Interesse.
U. Innsbruck / DE