Accelerator-on-a-Chip
Gordon-und-Betty-Moore-Stiftung fördert Entwicklung eines Teilchenbeschleunigers im Miniformat mit 13,5 Millionen US-Dollar.
Einen Teilchenbeschleuniger in der Größe einer Schuhschachtel zu bauen – das ist das Ziel eines Forscherteams unter Leitung der FAU Erlangen-Nürnberg und der Stanford University zusammen mit acht weiteren internationalen Partnern, darunter das DESY und die Uni Hamburg. Die Gordon and Betty Moore Foundation fördert das Projekt in den kommenden fünf Jahren mit umgerechnet 12,5 Millionen Euro.
Abb.: Beispiele für Nanostrukturen, die die Forscher für den Miniaturbeschleuniger untersuchen. (Bild: SLAC)
Teilchenbeschleuniger sind mehrere Kilometer lang und kosten viele Millionen Euro, große gar mehr als eine Milliarde Euro. Daher stehen Wissenschaftlern nur wenige Geräte zur Verfügung, die Zeit für Versuche ist streng und kurz getaktet. Eine neuen Methode, der „accelerator-on-a-chip“, könnte die Kosten und die Größe in Zukunft jedoch senken – und die Wissenschaft an und mit ihm dadurch drastisch verändern. „Die Miniaturisierung der Beschleuniger kann man mit der Entwicklung von Computern vergleichen, die zunächst ganze Räume einnahmen und nun am Handgelenk getragen werden können. Durch diesen Ansatz werden wir hoffentlich in der Lage sein, Teilchenbeschleunigung für Forschungsbereiche und -gruppen zugänglich zu machen, die vorher keinen Zugang zu dieser Technik hatten“, sagt Peter Hommelhoff vom Lehrstuhl für Laserphysik an der FAU, einer der beiden Projektleiter. „Dieser Prototyp, der auf unserem revolutionärem Design basiert, könnte den Weg bereiten für eine neue Generation von Desktop-Beschleunigern, die zu unvorhergesehenen Entdeckungen in der Biologie und den Werkstoffwissenschaften sowie Anwendungen in der Medizin und der Röntgenbildgebung führt“, ergänzt der zweite Projektleiter, Robert Byer von der Stanford University.
Die „accelerator-on-a-chip“-Methode, auf der das Projekt basiert, entstand durch Experimente der beiden Projektleiter: Hommelhoff und Byer haben unabhängig voneinander gezeigt, dass Laserstrahlen dazu genutzt werden können, Elektronen zu beschleunigen. Hommelhoff und sein Team haben dazu in ihrem Experiment den Elektronenstrahl eines Elektronenmikroskops verwendet, den sie extrem nah an einer mikrostrukturieren Glasstruktur entlanggeschossen haben. Indem sie von der Seite durch die feine Glasstruktur hindurch kurze intensive Laserpulse auf die Elektronen fokussiert haben, konnten sie die Elektronen beschleunigen. Byer und sein Team haben in einem sehr ähnlichen Experiment das Ganze mit viel energiereicheren Elektronen an einem Teilchenbeschleuniger gezeigt. Das Ergebnis: Die Elektronen wurden zehnmal schneller beschleunigt als in herkömmlichen Teilchenbeschleunigern. Zusammengenommen könnten die Ergebnisse aus dem Jahr 2013 einen kompakten Teilchenbeschleuniger ermöglichen.
Zu zeigen, dass in einem Elektronenmikrochip Teilchen beschleunigt werden können, ist jedoch erst der Anfang. Auf die Wissenschaftler warten nun neue große Herausforderungen: Sie müssen unter anderem den Elektronenstrahl in seinem Durchmesser um ein Tausendfaches verkleinern. Kein leichtes Unterfangen, wie Hommelhoff erklärt: „Dabei müssen wir folgendes beachten: Die Elektronen müssen auf einer schnurgeraden Linie gehalten werden. Sie lassen sich aber leicht in ihrer Richtung ablenken. Man kann sich Elektronen wie Murmeln vorstellen, die man entlang einer geraden Linie schieben will. Das ist mit einem langen Lineal sehr viel einfacher als wenn man es mit einem Textmarker versucht – vor allem, da die Elektronen sich immer auch untereinander abstoßen.“
Abb.: Auf dem Mikrochip werden die Elektronen extrem nah an einer mikrostrukturierten Glasstruktur (gelbe Pfeile) entlang geschossen. Von der Seite werden durch die feine Glasstruktur hindurch kurze intensive Laserpulse auf die Elektronen fokussiert, was die Elektronen beschleunigt. (Bild: FAU, J. McNeur)
Des Weiteren müssen die Forscher einen geeigneten Weg finden, die Elektronen zu erzeugen und vor allem auch präzise zu lenken. Dies bedeutet, dass nicht nur chipbasierte Beschleunigungselemente, sondern auch Ablenk- und Fokussierelemente in den neuen Beschleuniger eingebaut werden müssen – doch diese gibt es noch gar nicht. Schließlich müssen die Wissenschaftler das optimale Design für die Mikrochips finden, damit sie aneinandergereiht einen echten Teilchenbeschleuniger ergeben, in dem die Teilchen auch nicht verloren gehen. Denn ein Beschleuniger-Mikrochip ist nur ein Puzzlestück des Vorhabens, einen funktionierenden Teilchenbeschleuniger zu bauen. Schlüssel zum Erfolg wird sein, mehrere Mikrochips mit unterschiedlichen Funktionen in eine Reihe zu schalten und damit die Elektronen zu hohen Energien zu beschleunigen, oder aber, und das ist der Traum der Forscher, alle Elemente direkt auf einem größeren Mikrochip herzustellen.
Ob der Teilchenbeschleuniger dann am Ende tatsächlich so kompakt ist wie eine Schuhschachtel oder gar so klein wie ein Streichholzschachtel oder aber doch groß wie ein Umzugskarton wird, ist dabei gar nicht so wichtig, sagt Hommelhoff: „Es geht vor allem darum, einen Prototypen zu bauen, der zeigt, dass Teilchenbeschleuniger viel kleiner gebaut werden können als bisher.“ Derzeit erste Wahl für das Material der Miniatur-Beschleunigermodule ist dabei Silizium. „Das hat den Vorteil, dass man auf die weit fortgeschrittene Fertigungstechnik für Silizium-Mikrochips zurückgreifen kann“, erläutert Ingmar Hartl, Leiter der Lasergruppe im DESY-Forschungsbereich Forschung mit Photonen.
In dem Projekt forschen weltweit renommierte Experten in Beschleunigerphysik, Laserphysik, Photonik, Nanotechnologie und Nanofabrikation zusammen. Neben der FAU und der Standford University sind an dem Projekt drei Forschungszentren beteiligt – das SLAC National Accelerator Laboratory in Menlo Park, das Deutsche Elektronen-Synchroton in Hamburg und das Paul-Scherrer-Institut in Villigen – sowie eine Firma und weitere fünf Universitäten: die University of California Los Angeles, die Purdue University in Indiana, die Universität Hamburg, die ETH Lausanne und die TU Darmstadt.
FAU / DESY / OD
Weitere Infos
Video: Peter Hommelhoff comments on the importance of funding the accelerator-on-a-chip project and the support of the Gordon and Betty Moore Foundation
Video: An international team of researchers has begun a 5-year effort to build a working particle accelerator the size of a shoebox based on an innovative technology known as “accelerator on a chip.” (Moore F.)