Beinahe harmonisch
Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.
Nicht nur bei Orgelpfeifen, sondern auch bei Lichtwellen lässt sich die Erzeugung von Obertönen bei der Wechselwirkung mit Materie beobachten. Wie eine Forschergruppe der Universität Regensburg nun gezeigt hat, führt ein außergewöhnlicher Effekt der Quantenmechanik jedoch dazu, dass diese Schwingung bei genau der doppelten Frequenz unterdrückt wird – stattdessen „erklingt“ der Oberton bei etwas niedrigeren und etwas höheren Frequenzen. Musikalisch betrachtet würde ein Grundton C nicht mit seiner Oktave c ertönen, sondern mit den zwei benachbarten Tönen H und cis. Die Oktave selbst wird durch die „elektromagnetisch induzierte Transparenz“ unterdrückt. Der erstmalige Nachweis dieser Transparenz in Halbleiter-Nanostrukturen verspricht die Entwicklung neuartiger Laserquellen sowie Bauelementen für die optische Verarbeitung von Quanteninformationen.
Wolframdiselenid ist bekannt für seinen schichtartigen Aufbau. Diese Eigenschaft macht das Material ebenso wie Graphit zu einem guten Trockenschmierstoff. Die schwache Bindung einzelner Kristalllagen ermöglicht ihre einfache Trennung durch Abziehen mittels Klebeband – eine Technik, die Andre Geim und Konstantin Novoselov zum ersten Mal für Graphit verwendet haben, und die für ihre Experimente an einzelnen Graphitlagen, dem Graphen, bereits 2010 mit dem Physik-Nobelpreis ausgezeichnet wurden.
Im Gegensatz zu Graphen sind einzelne Lagen des Wolframdiselenids jedoch Halbleiter, die besonders stark mit Licht wechselwirken. Dies macht sie für eine ganze Reihe von optoelektronischen Anwendungen interessant, sodass sie zurzeit im Fokus vieler internationaler Forschungsgruppen stehen. Wird eine solche Kristalllage nun mit Laserlicht bestrahlt, so können die Elektronen im Material entsprechend Energie aus dem Lichtfeld aufnehmen. Finden sich im Material nun mindestens drei passende Elektronenenergien, so können sich die zugehörigen Schwingungen ähnlich wie Wasserwellen überlagern und gegenseitig verstärken oder auslöschen, man sieht hier Quanteninterferenz. Diese lässt sich im Experiment durch die auftretende gestreute Strahlung nachweisen. Hierfür wird das Farbspektrum der von der Oberfläche zurückgestreuten Strahlung durch das Auffächern, zum Beispiel mittels eines Prismas, auf fehlende Farbkomponenten untersucht – bei genau der doppelten Frequenz des eingestrahlten Lichts fehlt dann eine Farbe im Spektrum.
Die Beobachtung ist für derart dünne Materialsysteme bisher einzigartig und ermöglicht die Übertragung der aus atomaren Gasen bekannten Quantenphänomene auf ultradünne Materialsysteme. Die starke Licht-Materie-Wechselwirkung in diesen „künstlichen Atomen“ könnte in Zukunft die Entwicklung neuartiger Oberflächenlaser ermöglichen, die ohne die sonst notwendige hohe Dichte angeregter Elektronenzustände auskommen. Sie eröffnet auch neue Perspektiven für die Modifikation der elektronischen Eigenschaften von Festkörpernanostrukturen mit Hilfe von Lichtfeldern.
U. Regensburg / DE