Cäsiumatom als Thermometer
Neuartiger Quantensensor zeigt sehr hohe Empfindlichkeit.
Kaiserslauterer Physikern ist es mit einem Kollegen aus Hannover erstmals gelungen, ein einzelnes Cäsium-Atom als Sensor für ultrakalte Temperaturen zu verwenden. Um Temperatur eines ultrakalten Gases und das Magnetfeld zu messen, nutzten sie den Spin des Atoms. Das System zeichnete sich durch eine besonders hohe Empfindlichkeit aus. Solche Sensoren könnten künftig etwa zum Einsatz kommen, um Quantensysteme störungsfrei zu untersuchen.
Bei ihren Versuchen beobachteten die Wissenschaftler um Artur Widera einzelne Cäsium-Atome in einem Rubidium-Gas, das bis nahe an den absoluten Nullpunkt abgekühlt war. In ihrer aktuellen Studie sind sie der Frage nachgegangen, ob sich die Spin-Zustände des Cäsium-Atoms nutzen lassen, um Informationen zu gewinnen. „Beim Cäsium gibt es sieben verschiedene Möglichkeiten für diesen Spin“, sagt Widera von der TU Kaiserslautern. Ist das einzelne Cäsium-Atom in das Rubidium-Gas eingebracht, kollidieren die Rubidium-Atome mit diesem. „Dabei kann Drehimpuls zwischen den Atomen ausgetauscht werden, bis sich ein Gleichgewicht des Spins einstellt“, erläutert der federführende Forscher Quentin Bouton. Den Spin des einzelnen Atoms bestimmten die Forscher und konnten auf diese Weise die Temperatur ermitteln. Dass diese Methode funktionierte, zeigte ein Vergleich mit herkömmlichen Messmethoden, bei denen die Physiker denselben Temperaturwert erhalten hatten.
Das Besondere an der Studie war die hohe Empfindlichkeit bei der Messung. Bei einer typischen Messung wird der Sensor mit dem kalten Gas in Kontakt gebracht und gewartet, bis sich ein Gleichgewicht eingestellt hat. „Für Quantensensoren existiert im Gleichgewicht eigentlich eine fundamentale Grenze der Empfindlichkeit. Wir haben aber bereits im Vorfeld Informationen über die Wechselwirkungen zwischen Cäsium und Rubidium mit einfließen lassen, sodass wir nicht warten mussten, bis das Atom im Gleichgewicht mit dem Rubidium-Gas war“, fährt Bouton fort. Dadurch besitzt das Messsystem der Forscher eine rund zehn Mal höhere Empfindlichkeit, als es die fundamentale Quantengrenze verlangt. „Wir haben nur drei Spin-Drehungen, das heißt drei atomare Kollisionen, benötigt, um zu einem Ergebnis zu kommen“, so Bouton weiter. Somit ist auch die Störung des Rubidium-Gases auf nur drei Quanten begrenzt. Das ist ein wichtiger Schritt hin zu einer möglichst störungsarmen Messung von empfindlichen Quantensystemen, die für zukünftige Anwendungen in der Quantentechnologie interessant sind.
„Wir haben hier erstmals ein einzelnes Atom als Sensor verwendet, der Quanteninformationen nutzt und dabei deutlich besser ist als ein klassischer Sensor“, betont Widera. Auch mit Magnetfeldern haben die Physiker diesen Versuch durchgeführt und die magnetischen Zustände erfasst. Ihr System als empfindlicher Sensor eignet sich beispielsweise, um fragile Quantensysteme fast zerstörungsfrei zu untersuchen.
TU Kaiserslautern / JOL