Im Jahr 2014 hatten Astrophysiker in Beobachtungsdaten des Herschel-Weltraumteleskops eine Spektrallinie entdeckt, die sie vorläufig dem Amid-Ion zuordneten. Es wäre der erste Beweis für die Existenz dieses Moleküls im Weltall gewesen. Physiker um Roland Wester vom Institut für Ionenphysik und angewandte Physik der Universität Innsbruck haben nun gezeigt, dass diese Vermutung nicht richtig war.
Abb.: In dieser Ionenfalle haben die Forscher die Amid-Ionen mit Hilfe von Terahertz-Strahlung untersucht. (Bild: U. Innsbruck)
Neben Sternen werden manche Regionen der Galaxien von gigantischen Staub- und Gaswolken bevölkert. Das interstellare Medium bildet die Geburtsstätte von neuen Sternen. Diese entstehen, wenn sich die Wolken immer weiter verdichten bis es zur Fusionsreaktion kommt. Um diese Prozesse besser zu verstehen, ist es wichtig, die Zusammensetzung des interstellaren Mediums genau zu kennen.
Für das Amid-Ion hat das Team um Roland Wester nun im Labor zwei bisher unbekannte Frequenzen zum ersten Mal direkt gemessen und dabei hundertfach genauer bestimmt, als es bisher möglich war. Sie nutzten dafür die Terahertz-Spektroskopie. „Hier kommen Wellenlängen zwischen Mikrowellen und infrarotem Licht zum Einsatz“, erklärt der Physiker. „Damit können die Rotationsbewegungen von sehr kleinen Molekülen untersucht werden. Bei größeren Molekülen lassen sich Schwingungen von ganzen Molekülgruppen ermitteln.“
Die Gruppe um Roland Wester hat in den vergangenen Jahren in einem vom europäischen Forschungsrat ERC geförderten Projekt eine Methode entwickelt, mit der in Ionenfallen gefangene Moleküle mit Terahertzstrahlen angeregt werden. „Das Amid-Ion besteht aus einem Stickstoff-Atom und zwei Wasserstoff-Atomen, sieht genauso aus wie Wasser und verhält sich quantenmechanisch auch sehr ähnlich“, sagt Olga Lakhmanskaya aus dem Team von Roland Wester. „Wir haben erstmals die elementare Anregung der Rotation dieses Moleküls direkt gemessen.“ Der Nachweis gelang auch dank einer engen Zusammenarbeit mit dem Theoretiker Viatcheslav Kokoouline von der University of Central Florida, der für ein Semester als Gastprofessor an der Universität Innsbruck forschte.
Über den Vergleich mit den Messdaten des Herschel-Weltraumteleskops konnten die Innsbrucker Physiker nun belegen, dass die bisher gemessene Spektrallinie nicht von Amid-Ionen stammen können. „Wir konnten mit unseren Messungen zeigen, dass die vorläufige Zuordnung nicht korrekt ist“, betont Roland Wester. Im Weltall findet man verschiedene Stickstoffmoleküle wie Ammoniak, für das Amid-Ion steht nach den Innsbrucker Experimenten dieser Nachweis aber weiter aus. Die von den Physikern bestimmte zweite charakteristische Spektrallinie könnte helfen, dem Amid-Ion im Weltall auf die Spur zu kommen. „Wir hoffen, dass in Zukunft mit neuen Teleskopen auch diese Linie beobachtet werden kann. Dann könnte man auch über diese Frequenz nach dem Molekül im Weltall suchen.“ Westers Team will die neue Methode nun auch auf Molekülen mit vier oder fünf Atomen anwenden, wo Schwingungen und Rotationen noch sehr viel komplexer sind als beim dreiatomigen Amid.
U. Innsbruck / DE