Destille für Photonen
Paritätsmessung in Resonator erhöht Effizienz von Einzelphotonenquellen.
Das Destillieren von Spirituosen steigert den Gehalt von Alkohol relativ zum Wasseranteil. Ähnlich wirkt eine Methode auf Photonen, die ein Team vom Max-Planck-Institut für Quantenoptik in Garching entwickelt hat. Sie extrahiert aus einer Lichtquelle einzelne Photonen, drängt den unerwünschten Vakuumanteil zurück und „meldet“ dieses Ereignis. Solche Einzelphotonen sind als Quantenbits wichtig für die derzeit entstehende Quanteninformationstechnik. Diese „Photonen-Destille“ lässt sich sogar modular hintereinanderschalten, um die Reinheit von Ein-Photonen-Licht zu steigern.
So, wie das Brennen den Alkoholgehalt eines Getränks gegenüber dem Wassergehalt steigert, erhöht das Garchinger Experiment den Anteil von einzelnen Photonen im Verhältnis zum Vakuum. Ultimativ schwache Lichtquellen, die exakt ein Photon liefern können, spielen in der Quanteninformationstechnik eine zentrale Rolle. Der Bau von Einzelphotonenquellen ist allerdings eine Herausforderung, an der weltweit seit vielen Jahren geforscht wird. Dimmt man nun eine Lichtquelle so extrem ab, dass nur noch einzelne Photonen aus ihr entschlüpfen können, wird man mit der Würfelnatur der Quantenwelt konfrontiert: Mal kommt nichts, dann kommen zwei oder drei Photonen. Es ist ein bisschen wie das Auströpfeln einer Destille, wo man auch nicht sicher vorhersagen kann, wann der Tropfen kommt – und wie groß er sein wird.
Die Physiker aus Gerhard Rempes Abteilung am Max-Planck-Institut für Quantenoptik hatten nun die Idee, nicht etwa eine weitere Ein-Photonen-Lichtquelle zu entwickeln. Stattdessen kann ihr Experiment aus dem Licht einer beliebigen, sehr schwachen Lichtquelle – wie eine Destille – einzelne Photonen extrahieren und dieses Ereignis zuverlässig melden. Genau genommen reduziert es den Anteil des reinen Vakuums im Vergleich zum Ereignis, ein Photon zu erhalten. Zu den Eigenheiten der Quantenwelt gehört, dass das Vakuum selbst einen Quantenzustand darstellt. Will man sauber ein Photon präparieren, darf kein Vakuum beigemischt sein.
In der neuen Forschungsarbeit von Rempes Team kommen zwei Herausforderungen zusammen. Die erste Herausforderung besteht darin, exakt ein Photon zu gewinnen, die zweite, es zuverlässig nachzuweisen. Beide Aufgaben löst ein einzelnes Rubidiumatom in einem Schritt. Dieses Atom befindet sich in einer Art Spiegelkabinett. Es befindet sich zwischen zwei fast perfekten Spiegeln, die einander gegenüberstehen, gefangen. Der Abstand der Spiegel in diesem Resonator entspricht präzise dem Mehrfachen einer halben Lichtwellenlänge, in der das Atom ein eigenes Photon abstrahlen oder aufnehmen könnte. In diesem System kann das Atom wie ein Zeiger zwischen zwei Anzeigepositionen hin und her umklappen.
„Dieses System des Atoms im Resonator können wir als Destille für das Photon verwenden“, sagt Severin Daiß, Doktorand am Institut und Erstautor der Publikation. Die Garchinger richten extrem schwaches Laserlicht, aus dem sie ein Photon gewinnen wollen, auf die Kavität. Dort vollführt es etwas, das nur in der Quantenwelt funktioniert: Es „verschränkt“ sich mit der Atom-Resonator-Anordnung, bildet also damit einen gemeinsamen Quantenzustand. Dieser verschränkte Zustand macht das System zur Destille: Mit einer Messung an dem Atom können die Physiker eine gerade oder eine ungerade Anzahl an Photonen aus dem eingestrahlten Licht extrahieren.
Allerdings funktioniert das nicht wie ein Schalter, denn die Würfelnatur der Quantenwelt verhindert, dass auf Knopfdruck ein Photon durchkommt. „Entscheidend ist hier, dass wir das Atom nun als Zeiger benutzen können, der uns eine erfolgreiche Ein-Photon-Destillation meldet“, erklärt Daiß. Die Physiker lassen die Anordnung also Photonen „erwürfeln“, bekommen die Würfelzahl aber zuverlässig angezeigt.
In Verbindung mit ultraschwachem Licht kann der Modus „ungerade Photonenzahl“ nun Ereignisse mit einem Photon produzieren, weil mehr Photonen selten zur Verfügung stehen. Dies gelang bereits mit einer „Reinheit“ von 66 Prozent, das heißt, dass der Vakuumanteil auf ein Drittel zurückgedrängt war. Im Vergleich mit Einzelphotonen-Lichtquellen ist das auf Anhieb ein ordentliches Ergebnis. Diese Reinheit lässt sich mit besseren optischen Kavitäten in Zukunft noch erheblich steigern. Interessant ist auch, dass sich die photonendestillierenden Elemente hintereinanderschalten lassen, um so die Reinheit des durchgeschleusten Photons noch zu erhöhen. Auch die Qualität des Lichts anderer Einzelphotonenquellen lässt sich damit verbessern.
MPQ /DE