09.09.2013

Die Neuronenwolken lichten sich

Neue mikroskoptechnische und molekularbiologische Methode klärt Interaktion neuronaler Netzwerke.

Das Nervensystem des Fadenwurms C. elegans besteht aus lediglich 302 Nervenzellen. Das besondere am Fadenwurm ist, dass seit über 25 Jahren bekannt ist, wie alle diese seine Neuronen genau miteinander verknüpft sind. Ein solch kompletter neuroanatomischer Atlas ist bisher für keinen anderen Organismus erhältlich. Zudem weiß man von einzelnen Neuronen, welche Reaktion – etwa bestimmte Bewegungsabläufe – sie im Wurm hervorrufen. Dennoch liegt für die Neurowissenschaften auch beim einfachsten Modellorganismus das Wichtigste noch im Dunkeln: Es fehlt ein funktionaler Atlas, der zeigt, wie ganze Neuronengruppen dynamisch miteinander interagieren. Nur mit diesem Wissen kann man ein Nervensystem als Ganzes verstehen. Dann könnte man auch noch bessere Rückschlüsse auf andere Organismen, wie etwa den Menschen, ziehen. Diese Lücke haben nun Forscher aus Wien schließen können.

Abb.: Im Kopfbereich des Fadenwurms unter dem Mikroskop sind die Neuronen des „Gehirns“ grün eingefärbt. Darüber sind die Lichtscheiben des WF-TeFo Mikroskops angedeutet, wie sie den Bereich des Gehirns abscannen und dabei die Aktivität verschiedener Neuronen abbilden. (Bild: IMP)

Zentrales Anliegen war die Entwicklung einer neuen Mikroskopietechnik, welche die Aktivität sehr vieler Neuronen rasch und gleichzeitig erfassen kann. „Normalerweise scannt das Objektiv eines Lichtmikroskops in allen drei Dimensionen. Das dauert viel zu lange, um die Aktivität aller Neuronen gleichzeitig aufnehmen zu können. Wir haben nun einen physikalischen Trick gefunden, die Form des zur Mikroskopie eingesetzten Lichtes gezielt zu gestalten, was wir ‚Light Sculpting‘ nennen. Dadurch brauchen wir nur noch in einer Dimension zu scannen“, erklärt Robert Prevedel, Physiker in der Arbeitsgruppe von Alipasha Vaziri, Gruppenleiter am Forschungsinstitut für Molekulare Pathologie (IMP) und an den Max F. Perutz Laboratories (MFPL) sowie Leiter der Forschungsplattform „Quantum Phenomena & Nanoscale Biological Systems“ (QuNaBioS) der Universität Wien. „Mit den so produzierten 3D-Videos beobachten wir, wie sich die gleichzeitige Aktivität vieler Neuronen über einen bestimmten Zeitraum verändert“, sagt Prevedel.

Die neue Mikroskopietechnik war aber nur der halbe Weg zum Erfolg. Die Aktivität von Neuronen wird mit Hilfe von Kalziumsensoren gemessen. Ein bestimmtes zur Markierung verwendetes fluoreszierendes Protein leuchtet auf, wenn es Kalzium bindet. Sobald die Neuronen aktiviert werden, steigen die Kalziumkonzentration und damit auch die Intensität der Fluoreszenz in den messbaren Bereich an. Jedoch lagen die vielen Neuronen auf den Scanbildern so dicht aneinander, dass sie nicht voneinander zu unterscheiden waren. „Indem wir daraufhin den Kalziumsensor nur in den Zellkern anstatt in das gesamte Zellinnere gebracht haben, umgingen wir dieses Problem. So wurden die Umrisse einzelner Neuronen sichtbar, was deren Identifikation erlaubte“, erläutert Tina Schrödel, Neurobiologin am IMP. „Mit dieser Methode erfassen wir gleichzeitig fast alle Neuronen im Gehirn des Wurms“, so Schrödel weiter.

Die Forscher machen auf diese Weise Neuronengruppen aus, die bestimmte Aktivitätsmuster zeigen. Daraus lässt sich schließen, wie Information im gesamten Gehirn des Wurms verarbeitet wird. „Das große Ziel der Neurowissenschaften ist es, aus den Aktivitätsmustern von Neuronen abzuleiten, wie Organismen Sinnesreize verarbeiten, Entscheidungen treffen und dann reagieren. Diese neue Methode, die nur durch enge Zusammenarbeit von Physikern und Neurobiologen entwickelt werden konnte, bringt die Wissenschaftler diesem Ziel entscheidend näher. „Wir beginnen gerade, wichtige neue Erkenntnisse zu gewinnen, zu denen man vorher keinen experimentellen Zugang hatte. In den nächsten Schritten werden wir erforschen, wie unterschiedliche Reize im Gehirn verarbeitet werden“ erklärt Schrödel. Prevedel schließt: „Wir werden auch weiterhin stets neue Methoden dazu entwickeln. Wir wollen zum Beispiel wissen, wie bestimme Bewegungsabläufe im Gehirn geplant und ausgeführt werden. Dazu müssen wir sowohl die Mikroskopietechnik als auch die Datenanalyse verbessern, sodass wir dies auch bei frei beweglichen Würmern aufzeichnen können – das wird unser Ziel für die kommenden ein bis zwei Jahre sein.“

IMP / OD

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Meist gelesen

Themen