Plasmen spielen in vielen industriellen Anwendungen eine zentrale Rolle. Die energetisch angeregten Gase lassen sich zum Beispiel nutzen, um Beschichtungen auf Oberflächen aufzubringen, etwa kratzfeste Schutzschichten auf Brillengläser aus Kunststoff, oder hochpräzise optische Filter auf Quarzglas. Das Plasma hat dabei unter anderem die Aufgabe, die beispielsweise durch Verdampfung auf den Träger aufgebrachten Schichten mittels Ionenbeschuss gewissermaßen festzuklopfen. Dabei bestimmen die Plasmaeigenschaften, die ihrerseits über verschiedene Prozessparameter eingestellt werden, die Eigenschaften der abgeschiedenen Schichten maßgeblich. Ihre genaue Kenntnis ist daher der Schlüssel für exakt reproduzierbare Schichteigenschaften – sowohl beim Übertragen von Prozessen zwischen Anlagen als auch bei der Überwachung und Regelung in laufenden Prozessen. Ein neuartiges Messinstrument sorgt dafür, dass solche Prozesse immer exakt gleich ablaufen: Die Multipolresonanzsonde kann die Plasmadichte ständig messen, ohne zu stören.
„In der modernen Produktion wird auch immer mehr Wert auf Exaktheit gelegt“, berichtet Prof. Dr. Ralf Peter Brinkmann, Inhaber des Lehrstuhls Theoretische Elektrotechnik der RUB. Alle entstehenden Produkte müssen genau gleich sein, die Beschichtung darf keine Fehler aufweisen. Um diese Genauigkeit zu erreichen, ist es notwendig, das Plasma ständig zu überwachen. Besonders auf die Elektronendichte kommt es bei Beschichtungsprozessen an. Würde sie zu stark schwanken, würde dies die Beschaffenheit der fertigen Beschichtung negativ beeinflussen. „Idealerweise sollte die Elektronendichte ständig gemessen und bei Bedarf automatisch nachjustiert werden, sodass kein Mensch in den Prozess eingreifen muss“, erklärt Brinkmann.
Die Anforderungen an ein Messinstrument, das das leisten kann, sind vielfältig: Es sollte möglichst klein sein, zuverlässig, wartungsfrei, und es darf weder den Beschichtungsprozess stören noch selbst im Plasma beschädigt werden.
Eine Idee wird schon seit langem verfolgt: Die Elektronen, die sich im Plasma frei bewegen, können durch das Anlegen einer kleinen äußeren Spannung in Schwingungen geraten. Trifft man die richtige Frequenz, entsteht eine Resonanz, erkennbar daran, dass das Plasma besonders viel Energie aufnimmt. Da die Resonanzfrequenz abhängig von der Elektronendichte ist, kann man diese im Prinzip dann berechnen.
Frühere Versuche, diese Idee in die Praxis umzusetzen, hatten aber mit Schwierigkeiten zu kämpfen, da bei mehreren verschiedenen Frequenzen gleichwertige Resonanzen auftraten. Analysen der Bochumer Theoretiker gaben Antwort auf die Frage, woher die verschiedenen Resonanzen kamen: So einfach die Messapparatur auch konstruiert war, es entstanden an verschiedenen ihrer Teile unterschiedliche Schwingungen mit unterschiedlichen Resonanzfrequenzen.
Um Abhilfe zu schaffen, entwarf das Team ein Konzept, das auf möglichst einfache Schwingungen zielt. Es galt: je symmetrischer, desto besser. „Die Kugelform ist die einfachste denkbare Konfiguration“, so Brinkmann. „Auch hier findet man bei Messungen Resonanzen bei verschiedenen Frequenzen vor“, erklärt er. „Sie lassen sich aber eindeutig sortieren.“ In Anlehnung an das dabei eingesetzte mathematische Verfahren der Multipolanalyse kam es zum Namen Multipolresonanzsonde, kurz MRP (engl. Multipole Resonance Probe).
Die Entwicklung der MRP bis hin zur praktischen Einsetzbarkeit wurde vom Bundesministerium für Bildung und Forschung in den Verbundprojekten Pluto und Pluto plus gefördert. Dabei ergab sich auch die Chance, die Sonde bei Industriepartnern zu testen. Und es zeigte sich: Wurde die Elektronendichte im Plasma durch ständige Überwachung mittels MRP und automatische Anpassung der Ansteuerung konstant gehalten, reduzierte das die Schwankungen der Prozessergebnisse maßgeblich. Mittlerweile steht ein Spin-off kurz vor der Gründung.
RUB / LK
Weitere Infos