23.01.2007

Einzelne Moleküle im Visier

Züricher Chemiker haben ein neues Analyseverfahren entwickelt, mit dem sich einzelne Moleküle auf Oberflächen zuverlässig identifizieren lassen.



Züricher Chemiker haben ein neues Analyseverfahren entwickelt, mit dem sich einzelne Moleküle auf Oberflächen zuverlässig identifizieren lassen.

Forscher der ETH Zürich haben ein Analyseverfahren entwickelt, das insbesondere für Anwendungen in der Nanotechnologie von großem Interesse sein dürfte. Wie die Gruppe von ETH-Professor Renato Zenobi in der Fachzeitschrift „Journal of Physical Chemistry“ berichtet, gelang es ihr, einzelne Moleküle auf einer Oberfläche zu lokalisieren und chemisch genau zu bestimmen. Damit stößt die chemische Analyse in neue Dimensionen vor. Eine Identifikation auf einem Maßstab von gerade mal 10 Nanometern wird durch dieses neue Verfahren möglich.

Um einzelne Moleküle nachzuweisen, setzte man bisher auf die Fluoroszenzmethode. Diese ermöglicht allerdings keine absolut zuverlässige Identifikation der gefundenen Substanzen. Die von nun in Zürich entwickelte Methode basiert hingegen auf der Raman-Spektroskopie, die einen regelrechten Fingerabdruck des Moleküls liefert. Dabei wird die zu untersuchende Probe mit Laserlicht bestrahlt. Der größte Teil des Lichts wird umgehend reflektiert; ein Teil jedoch wird von den Molekülen absorbiert und anschließend als klar definierte Ramanstrahlung wieder abgegeben. Misst man diese ausgesendete Strahlung, lässt sich erkennen, welche Substanzen sich auf der Probenoberfläche befinden.

Das Prinzip dieser Messmethode ist an sich schon lange bekannt. Limitierend war bisher, dass Einzelmoleküle ein zu schwaches Signal aussenden. Den ETH-Forschern gelang es nun aber, mit einer speziellen Versuchsanordnung das Signal massiv zu verstärken. Bereits seit längerem weiß man, dass die Ramanstrahlung intensiver wird, wenn man die Probe auf eine Silber- oder Goldunterlage aufträgt. Einen vergleichbaren Effekt, allerdings mit einer wesentlich kleineren räumlichen Ausdehnung, erreicht man, wenn man während der Messung mit einer Silber- oder Goldspitze über die Probe fährt.

Zenobi gelang es nun, durch die Kombination der beiden Ansätze eine hochauflösende Analysemethode zu entwickeln. Die Probe wird auf eine flache Oberfläche aus Gold aufgebracht. Während der Messung fährt man mit einer Silberspitze, die ähnlich fein ist wie diejenige eines Rasterkraftmikroskops, über die Probe. Zwischen Spitze und Goldunterlage entsteht auf einer Fläche von ungefähr 10 mal 10 Nanometern ein starkes elektrisches Feld, welches das Ramansignal um einen Faktor 10 7 verstärkt.

Die Forscher konnten anhand von zwei verschiedenen Substanzen zeigen, dass sich mit der Methode grundsätzlich alle Verbindungen nachweisen lassen. Die Wissenschaftler sind sich auch sicher, dass sie mit dem Verfahren tatsächlich einzelne Molekülen nachweisen können. Verdünnt man beispielsweise die Probesubstanz auf der Goldoberfläche, misst man dort, wo noch Moleküle vorhanden sind, immer noch die gleich starken Signale wie vorher. Allerdings gelingt ein Nachweis - wie erwartet - an deutlich weniger Stellen. Für die Präzision des Verfahrens spricht auch, dass die gemessenen Signale über einige Sekunden hinweg betrachtet schwanken. Dies rührt nach Ansicht der Forscher von den Bewegungen der Moleküle her. Würden die gemessenen Ramansignale von einer Ansammlung von Molekülen stammen, würde man keine solche Schwankung erwarten. Ein dritter Hinweis, der zuversichtlich stimmt, ist schließlich, dass an vereinzelten Stellen das Ramansignal plötzlich unwiderruflich verschwindet. Dies, so erklären die Forscher, geschieht dann, wenn die Moleküle durch das Laserlicht zersetzt werden.

Die Forscher sehen für ihre neue Methode zahlreiche Anwendungsmöglichkeiten. Prinzipiell ist es nun möglich, auf dünnen Materialproben mit hoher Präzision zu bestimmen, wo welche Substanzen vorkommen. Solche Messungen könnten in der Biologie, in der Umweltanalytik, aber auch bei der Herstellung von neuen Materialen hilfreiche Informationen liefern.

Quelle: ETH Zürich

Weitere Infos:

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Meist gelesen

Themen