Entropie einer Quantenuhr
Uhren ticken umso genauer, je mehr Arbeit sie verrichten.
Theoretisch hat Zeit in der Physik keine bevorzugte Richtung, solange einfache Systeme isoliert betrachtet werden. Eine Videoaufnahme zweier kollidierender Billardkugeln lässt sich vorwärts oder rückwärts abspielen, ohne zusätzliche Hinweise lässt sich nicht sagen, welche Abspielrichtung die korrekte ist. Der unerbittliche Marsch der Zeit in eine Richtung, den alle Lebewesen wahrnehmen, ergibt sich erst, wenn wir auch die Wechselwirkungen der isolierten Systeme mit ihrer Umgebung berücksichtigen. „Irreversibilität kommt mit Komplexität”, sagt Marcus Huber vom Wiener Institut für Quantenoptik und Quanteninformation der TU Wien.
Der zweite Hauptsatz der Thermodynamik besagt, dass die Energiegefälle im Universum, die es erlauben, dass physikalische Arbeit verrichtet werden kann, sich mit der Zeit unaufhaltsam „ausmitteln“. Eine Kaffeetasse, die auf den Boden fällt, setzt sich nicht spontan wieder zusammen, denn die heile Tasse stellt, statistisch gesehen, eine sehr seltene Konstellation ihrer Atome dar. Dadurch, dass sie Teil des Universums und seiner schwindenden Menge an nutzbarer Energie sind, müssen alle Dinge einer zeitlichen Einbahnstraße folgen. Das gilt auch für Uhren, die auf den Gesetzen der Quantenmechanik basieren. „Auch jedes Ticken einer Uhr ist irreversibel, weil es Energie braucht und damit die Entropie im Universum erhöht. Von der Standuhr bis zur Atomuhr braucht jede Vorrichtung zur Zeitmessung einen inneren periodischen Prozess und eine Interaktion mit einem irreversiblen Prozess, also der Außenwelt. Sonst kann die Zeit nicht abgelesen werden”, sagt Huber. Für eine Sonnenuhr ist der irreversible Prozess etwa das langsame Ausbrennen der Sonne und der periodische Prozess die Drehung der Erde um ihre eigene Achse. Gemeinsam mit Kollegen aus seiner Forschungsgruppe hat Huber eine mathematische Formulierung entwickelt, die diese beiden Komponenten für Quantenuhren etabliert.
Aus diesen Überlegungen ergibt sich, dass die Genauigkeit von Quantenuhren durch die Entropie limitiert ist. Je genauer eine Uhr ist, desto mehr Entropie muss sie dissipieren. Das lässt sich nicht beliebig steigern. „Wir können für jedes bisschen an zusätzlicher Entropie ein wenig mehr an Information aus der Uhr ablesen. Wo die Grenze liegt, ist eine offene Frage”, sagt Doktorand Emanuel Schwarzhans. Dieser Zusammenhang wurde in Oxford gemeinsam mit Huber und seinem Kollegen Paul Erker auch schon in einem Experiment demonstriert. Ihre Quantenuhren aus Nanomembranen, die elektrische Ströme in Kondensatoren induzieren, ticken umso genauer, je mehr Arbeit sie verrichten.
Zudem setzt natürlich auch der periodische Prozess, den eine Uhr benötigt, der Genauigkeit in der Praxis Grenzen. „Theoretisch kann der periodische Prozess unendlich genau sein. Wenn ich ein unendlich komplexes Uhrwerk hätte, könnte ich damit einen perfekten periodischen Prozess erzeugen”, sagt Huber. Das neue mathematische Modell der Physiker zeigt aber, dass eine Uhr eben immer eine Kombination aus periodischem Prozess und einem irreversiblen Vorgang sein muss.
„Der periodische Prozess einer Uhr, also zum Beispiel ein Pendel, gibt der Uhr vor, wann ein Ticken stattfinden kann, es legt die Auflösung fest”, sagt Huber. Seine Kollegen Maximilian Lock und Nicolai Friis betonen, dass ein entscheidender Durchbruch ihrer Arbeit in der präzisen mathematischen Formulierung dieses Problems liegt, was durch die konzeptuelle Trennung dieses Prozesses vom eigentlichen Ticken der Uhr ermöglichte wurde. „Das Ticken der Uhr ist aber Teil des irreversiblen Prozesses und erhöht die Entropie im System”, sagt Huber. Unendlich genau laufen demnach nur Uhren, deren Ticken niemand sehen oder hören kann.
TU Wien / JOL
Weitere Infos
- Originalveröffentlichung
E. Schwarzhans et al.: Autonomous Temporal Probability Concentration: Clockworks and the Second Law of Thermodynamics, Phys. Rev. X 11, 011046 (2021); DOI: 10.1103/PhysRevX.11.011046 - Quanteninformation und Thermodynamik (M. Huber), Institut für Quantenoptik und Quanteninformation, Wien