Extrem robust und ultrasensibel: Erstmals topologisches Quanten-Bauelement realisiert
Erfolg rückt topologische Quantenmaterialien in den Fokus der Halbleiterindustrie.
Quantenphysikern aus Deutschland und Frankreich ist ein Durchbruch gelungen: Erstmals realisierten sie ein Halbleiter-Bauelement, bei dem ein bestimmtes Quantenphänomen für höchste Robustheit sowie außergewöhnliche Sensibilität sorgt. Der topologische Skin-Effekt schützt die Funktionalität des Bauteils vor äußeren Einflüssen und ermöglicht extrem empfindliche Messungen. Grundlage des Forschungserfolgs war eine geschickte Anordnung von Kontakten auf dem Werkstoff Aluminium-Gallium-Arsenid. Die Ergebnisse öffnen der topologischen Physik neue Potenziale für hochpräzise Quanten-Module und rücken topologische Quantenmaterialien in den Fokus der Halbleiterindustrie.
Halbleiter-Bauelemente sind kleinste Schalteinheiten und sorgen in moderner Elektronik dafür, dass Elektronen transportiert und gesteuert werden können. Das bringt unsere Alltagstechnologien zum Laufen – Handys und Laptops genauso wie moderne Medizintechnik oder Auto-Sensoren. Materialverunreinigungen oder Temperaturschwankungen können den Stromfluss in den sensiblen Bauteilen jedoch stören. Dann leidet die Funktionalität des jeweiligen elektronischen Geräts.
Im Gegensatz dazu gelten topologische Quantenmaterialien als äußerst robust und sind dadurch besonders geeignet für extrem leistungshungrige Technologien. „Dank des topologischen Skin-Effekts können die Ströme zwischen den verschiedenen Kontakten auf dem Quanten-Halbleiter weder durch Verunreinigungen noch durch andere äußere Einflüsse gestört werden. Das macht topologische Bauelemente für die Halbleiterindustrie zunehmend interessant. Denn bei ihrer Herstellung kann man auf die extrem hohen Reinheitsgrade vom Material verzichten, die unsere heutige Elektronik so teuer machen“, erläutert Jeroen van den Brink vom Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden. „Unser Quanten-Halbleiter ist stabil und hochpräzise zugleich – diese Kombination ist ungewöhnlich. Das macht unser topologisches Bauteil gerade für die Sensortechnik spannend.“
Durch die Nutzung des topologischen Skin-Effekts werden neuartige, leistungsstarke elektronische Quanten-Bauteile möglich, die noch dazu sehr klein werden können. „Der Durchmesser unseres topologischen Quanten-Bauteils beträgt ungefähr 0,1 Millimeter und kann für zukünftige Elektronik-Anwendungen leicht weiter verkleinert werden“, so van den Brink. Der Forschungserfolg des Teams besteht darin, dass sie den topologischen Skin-Effekt als erste auf mikroskopischer Ebene in einem Halbleiter-Material verwirklichen konnten. Auf makroskopischer Ebene konnte dieses Quantenphänomen vor drei Jahren erstmals experimentell nachgewiesen werden – allerdings nur in einem künstlichen Metamaterial und nicht in einem natureigenen Werkstoff. Erst der aktuelle Forschungsbeitrag führte zu einem winzigen topologischen Quanten-Bauteil auf Halbleiterbasis, das außerordentliche Widerstandsfähigkeit und ultrahohe Sensibilität verbindet.
„In unserem Quanten-Bauteil ist die Beziehung zwischen Strom und Spannung durch den topologischen Skin-Effekt geschützt, weil sich die Elektronen alle am Rand aufhalten. Selbst bei Verunreinigungen im Halbleiter-Material, bleibt der Stromfluss stabil. Gleichzeitig können schon geringste Schwankungen von Strom oder Spannung von den Kontakten gemessen werden“, erklärt van den Brink. Das topologische Quanten-Bauteil ist vor allem für den Bau von hochpräzisen Sensoren oder Verstärkern mit sehr kleinem Durchmesser geeignet.
Ausschlaggebend für den Forschungserfolg war die Idee, den topologischen Effekt durch eine geschickte Anordnung von Materialien und Kontakten auf einem AlGaAs-Halbleiter-Bauteil unter ultrakalten Temperaturen sowie einem starken Magnetfeld zu provozieren. „Wir haben den topologischen Skin-Effekt aus dem Bauteil regelrecht herausgekitzelt“, sagt van den Brink. Dafür hat das Team eine zweidimensionale Halbleiterstruktur genutzt. Die Kontakte wurden so angeordnet, dass der elektrische Widerstand an den Rändern der Kontakte gemessen und der topologische Effekt dort direkt nachgewiesen werden konnte. Jeroen van den Brink und seine Kollegen arbeiten jetzt weiter am Verständnis dieses Phänomens, um es für künftige Technologien nutzbar zu machen.
TU Dresden / RK