Flüssigkristalle für schnelle Schaltprozesse
Neu entwickelte cholesterische Verbindung mit sehr kurzer Ganghöhe.
Ein internationales Team hat eine neu synthetisierte flüssigkristalline Verbindung untersucht, die Anwendungen in der Opto-Elektronik verspricht. Einfache stäbchenförmige Moleküle mit nur einem einzigen Chiralitätszentrum ordnen sich bei Raumtemperatur von selbst zu spiralförmigen Strukturen. Durch resonante Röntgenstreuung an BESSY II konnten die Forscher nun die Ganghöhe der Helixstruktur bestimmen. Mit nur etwa hundert Nanometern ist diese extrem kurz, was besonders schnelle Schaltprozesse ermöglichen könnte.
Flüssigkristalle sind zwar nicht fest, sondern flüssig, aber einige ihrer physikalischen Eigenschaften sind dennoch richtungsabhängig wie in einem Kristall. Das liegt daran, dass sich ihre Moleküle in bestimmten Mustern anordnen können. Zu den bekanntesten Anwendungen gehören Flachbildschirme und digitale Displays. Sie basieren auf Pixeln aus Flüssigkristallen, deren optische Eigenschaften durch elektrische Felder geschaltet werden können.
Einige Flüssigkristalle bilden cholesterische Phasen: Die Moleküle ordnen sich zu schraubenförmigen Strukturen an, die durch eine Steigung gekennzeichnet sind und sich entweder nach rechts oder nach links drehen. „Die Steigung der cholesterischen Spiralen bestimmt, wie schnell sie auf ein angelegtes elektrisches Feld reagieren“, erklärt Alevtina Smekhova vom HZB.
Sie und ihre Kollegen untersuchten eine neu entwickelte flüssigkristalline cholesterische Verbindung namens EZL10/10. „Solche cholesterischen Phasen werden normalerweise von Molekülen mit mehreren chiralen Zentren gebildet, aber hier hat das Molekül nur ein chirales Zentrum“, erklärt Smekhova. Es handelt sich um eine einfache Molekülkette mit einer Laktateinheit.
An BESSY II hat das Team diese Verbindung mit weichem Röntgenlicht untersucht und die Steigung und räumliche Anordnung der Spiralen bestimmt. Aus den Messdaten ermittelten sie eine Ganghöhe von 104 Nanometern. Das ist halb so groß wie bei bisher bekannten cholesterischen Phasen in Flüssigkristallen. Weitere Analysen zeigten, dass die cholesterischen Spiralen in diesem Material Domänen mit charakteristischen Längen bilden.
„Diese sehr kurze Ganghöhe macht das Material einzigartig und vielversprechend für optoelektronische Bauelemente mit sehr kurzen Schaltzeiten“, betont Smekhova. Darüber hinaus ist die EZ110/10-Verbindung thermisch und chemisch stabil und kann leicht weiter variiert werden, um Strukturen mit maßgeschneiderten Ganghöhen zu erhalten.
HZB / RK
Weitere Infos
- Originalveröfffentlichung
A. Smekhova et al.: Ultra-short helix pitch and spiral ordering in cholesteric liquid crystal revealed by resonant soft X-ray scattering, Soft Matter, online 29. November 2021; DOI: 10.1039/D1SM01543E - Beamtime Coordination, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH