Gegensätze in einem Stahl vereint
Neue Legierung weist dank doppelter Kristallstruktur sowohl gute Duktilität als auch hohe Festigkeit auf.
Für die Stahlindustrie zeichnet sich womöglich ein Ausweg aus einem Dilemma ab, das schon solange besteht, wie Menschen Metall verarbeiten. Wissenschaftler des Max-Planck-
Abb.: Eine Legierung aus Eisen, Mangan, Cobalt und Chrom wird gut formbar, weil in ihr zwei Kristallstrukturen nebeneinander vorliegen können und die eine Struktur sich in die andere umwandeln kann. (Bild: MPIE)
Idealerweise sollten Stähle und mit ihnen verwandte metallische Legierungen beides können: Sie dürfen nicht zersplittern, wenn sie etwa im Walzwerk verarbeitet werden oder als Autokarosserie in einen Unfall geraten – sie müssen also duktil sein. Sie sollten aber auch fest sein, damit sie sich nicht schon verformen oder gar brechen, wenn geringe Kräfte auf sie einwirken. Einem Team um Dierk Raabe, Direktor am Max-Planck-
„Wir haben bei der Entwicklung dieses Materials eine neue Strategie verfolgt, die generell neue Möglichkeiten für das Design metallischer Werkstoffe schafft“, sagt Dierk Raabe. Das Team setzte bei einem Typ von Materialien an, der in der Werkstoffwissenschaft seit ein paar Jahren untersucht wird, aber für viele Anwendungen bisher zu spröde ist: Legierungen, in die Metallurgen ähnliche Mengen von typischerweise fünf oder mehr verschiedenen Metallen mischen.
Da sich die Atome der verschiedenen Elemente ohne erkennbare Ordnung auf die Positionen in den Kristallgittern dieser Stoffe verteilen und die Entropie ein Maß für die Unordnung ist, heißen die Materialien Hochentropie-
Stähle, die hauptsächlich Eisen, in der Regel eine weitere Hauptkomponente und geringe Mengen anderer Bestandteile wie etwa Kohlenstoff, Vanadium oder Chrom enthalten, sind dagegen oft duktil. Sie sind also gerade nicht spröde, dagegen bislang oft noch nicht fest genug, um beispielweise den Bau von dünnwandigeren Autokarosserien zu ermöglichen. In den Kristallen von Stählen sind die Atome mehr oder weniger regelmäßig angeordnet. Besonders duktil werden Stähle allerdings, wenn sie dabei von einer in eine andere Struktur wechseln können. Denn dieser Prozess schluckt Energie, die in dem Material dann keinen Schaden mehr anrichten kann. In einer Karosserie oder anderen stählernen Bauteilen wechseln sich dann winzige Bereiche mit den beiden verschiedenen Atomordnungen ab.
Genau das Nebeneinander unterschiedlicher Kristallstrukturen galt in Hochentropie-
„Mit dieser Legierung haben wir bewiesen, dass unser Konzept funktioniert“, sagt Dierk Raabe. „Wenn wir die Mikrostruktur und die Zusammensetzung weiter verbessern, können wir die Festigkeit und Duktilität aber sicher noch stärker erhöhen.“ Genau daran werden die Forscher nun arbeiten. So könnten sie der metallverarbeitenden Industrie die Entscheidung zwischen festen und duktilen Werkstoffen endgültig abnehmen. Die metallischen Werkstoffe aus der Düsseldorfer Materialschmiede dürften sich dann so leicht und kostengünstig verarbeiten lassen wie ein besonders duktiler Stahl und als Karosserie in einem Unfall auch genauso viel Energie des Aufpralls aufnehmen. Gleichzeitig dürfte der Werkstoff so fest sein, dass auch dünne und somit preiswerte sowie ressourcenschonende Bleche nicht schon bei einem schwachen Stoß nachgeben.
MPIE / DE