Graphen als Supraleiter
Bandstruktur von Graphen-Doppelschichten präzise bestimmt.
Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales Netz mit sechseckigen Maschen. Graphen leitet den Strom zwar sehr gut, ist aber kein Supraleiter. Nun lässt sich dies vielleicht ändern. Im April 2018 zeigte eine Gruppe am Massachusetts Institute of Technology MIT, dass sich in einer doppelten Lage aus Graphen eine Form der Supraleitung erzeugen lassen könnte.
Abb.: Die Messungen zeigen beim doppellagigem Graphen, dass die Bandstruktur einen flachen Bereich etwas unterhalb der Fermi-Energie aufweist. (Bild: HZB)
Dafür müssen die beiden aufeinandergelegten Honigwaben um einen magischen Winkel von 1,1° gegeneinander verdreht werden. Dies verändert die Bandstruktur der Elektronen, die beschreibt, wie sich die Ladungsträger auf quantenmechanisch zulässige Energiezustände verteilen und welche Ladungsträger überhaupt für den Transport zur Verfügung stehen. Durch den magischen Winkel entstehen flache Bereiche in dieser Bandstruktur, so dass sich ein Teil der Ladungsträger frei bewegen kann. Allerdings ist die Herstellung solcher exakt verdrehten Doppellagen viel zu aufwändig für die Massenproduktion. Dennoch hat der Befund bei Experten viel Aufmerksamkeit erregt.
Nun zeigt eine Gruppe am Helmholtz Zentrum Berlin HZB um Oliver Rader und Andrei Varykhalov an BESSY II, dass es eine deutlich einfachere Möglichkeit gibt, um flache Bereiche in der Bandstruktur von Graphen zu erzeugen. Die Proben hatte Thomas Seyller von der TU Chemnitz, mit einem Verfahren hergestellt, das auch für die Produktion größerer Flächen geeignet ist: Ein Siliziumkarbidkristall wird erhitzt, bis Siliziumatome von der Oberfläche verdunsten. Die verbliebenen Kohlenstoffatome bilden zunächst eine Lage Graphen auf der Oberfläche und dann eine zweite Lage Graphen. Die beiden Graphen-Schichten sind dabei nicht gegeneinander verdreht, sondern liegen genau übereinander.
Mit Hilfe von winkelaufgelöster Photoemissionsspektroskopie (ARPES) lässt sich an BESSY II nun die Bandstruktur in Materialien mit extrem hoher Präzision ausmessen. Dabei fand das Team in den Graphen-Proben einen flachen Bereich in der Bandstruktur an einer überraschenden Stelle. „Bisher wurde die Graphen-Doppellage vor allem untersucht, weil sie eine Bandlücke aufweist, die sie zu einem Halbleitermaterial macht“, erklärt Varykhalov. „Erst mit der hohen Auflösung, die das ARPES-Instrument liefert, können wir diese Bandlücke genauer vermessen.“ „Diesen Bereich hatte bislang niemand so genau untersucht", erklärt Dmitry Marchenko: „Daher wurde bisher übersehen, dass es an dieser Stelle der Bandstruktur von Graphen einen flachen Bereich gibt.“
Dieser flache Bereich der Bandstruktur ermöglicht eine bestimmte Form der Supraleitung: Denn damit können sich Elektronen in diesem Bereich völlig frei bewegen. Allerdings nur, wenn sich der flache Bereich genau in Höhe der Fermi-Energie befindet. Beim zweischichtigen Graphen liegt das Energieniveau des flachen Bereichs nur 200 Milli-Elektronenvolt unter der Fermi-Energie. Es ist jedoch möglich, dieses Energieniveau auf die Fermi-Energie zu erhöhen, entweder durch Dotierung mit Fremdatomen oder durch Anlegen einer externen Gate-Spannung.
Die Physiker haben festgestellt, dass Wechselwirkungen zwischen den Graphen-Schichten sowie zwischen Graphen und Siliziumkarbid-Gitter für die Ausbildung des Flachbandbereichs verantwortlich sind. „Wir können dieses Verhalten mit sehr wenigen Parametern vorhersagen und diesen Mechanismus nutzen, um die Bandstruktur gezielt zu beeinflussen“, sagt Rader.
HZB / JOL