07.08.2015

Graphen vom Fließband

Trockene Transfermethode ermöglicht serienmäßige Herstellung von Graphen hoher Qualität.

Graphen besteht aus einer Atomlage, ist sehr flexibel und gleichzeitig mechanisch extrem stabil. Optisch transparent leitet es elektrischen Strom besser als jedes andere Material. Die Kombination dieser Eigenschaften ist einzigartig und so könnte man unter Einsatz von Graphen technologische Durchbrüche – beispielsweise für Touch-Screens und in der flexiblen Optoelektronik – erreichen. Bislang war die Herstellung von Graphen problematisch: Die britisch-russischen Wissenschaftler Andre Geim und Konstantin Novoselov nutzten im Jahr 2004 in einem unkonventionellen Experiment Tesafilm, um eine einzige Lage Graphen von einem Stück natürlichen Graphit zu trennen. Die „Tesafilm-Methode“ ist allerdings für eine Massenproduktion vollkommen ungeeignet.

Abb.: Luca Banszerus, Christoph Stampfer, Michael Schmitz und Stephan Engels vor dem CVD-Ofen zum Wachsen von Graphen. (v.l.; Bild: P. Winandy)

Jetzt ist Luca Banszerus sowie Wissenschaftlern der RWTH Aachen und des Forschungs­zentrums Jülich ein entscheidender Durchbruch gelungen. Banszerus, der noch im Masterstudiengang Physik an der RWTH studiert, erhielt bereits mehrere Preise und Auszeichnungen. Auch gewann er 2010 im Wettbewerb „Jugend forscht“, damals arbeitete er schon mit einem Partner an dem Thema Graphen. Die Forschungs­arbeit fand im Rahmen der Jülich Aachen Research Alliance, kurz JARA, unter Leitung von Christoph Stampfer, Leiter des II. Physikalischen Institutes A der RWTH Aachen, statt. Sie wurde mit Mitteln der Deutschen Forschungs­gemeinschaft und aus dem „Flagship Graphene“-Projekt der Europäischen Kommission sowie dem ERC Starting Grant für Christoph Stampfer finanziert. „Die Ergebnisse sind ein bedeutender Fortschritt im Bestreben, die Lücke zwischen wissenschaftlicher Forschung und technologischer Anwendung von Graphen zu schließen“, so Stampfer.

Mit der neuartigen Herstellungs­methode lässt sich synthetisches Graphen von ultrahoher Qualität gewinnen. Die Herstellung beruht auf der chemischen Gasphasen­abscheidung, kurz CVD (chemical vapor deposition). Dabei wird die Reaktion zwischen Methan und einer geheizten Kupfer-Oberfläche genutzt, um große und makellose Graphen-Flocken herzustellen. Die CVD-Methode ist zwar skalierbar und kostengünstig. Aber das auf diese Weise synthetisierte Graphen, war lange Zeit vor allem im elektrischen Bereich von geringerer Qualität als natürliches, über die „Tesafilm-Methode” hergestelltes Graphen. Dies ändert sich nun grundlegend.

Das Forscherteam zeigt, dass zwischen dem „Tesafilm-Graphen” und den chemisch synthetisierten Flocken kein Qualitätsunterschied besteht. Vielmehr ist der Transfer des Graphens vom Kupfer auf ein anderes Substrat der kritische Schritt. Bisher wurde Graphen mit einer nass-chemischen Methode transferiert, die das Graphen verunreinigt und aufwellt. Die von Banszerus und Kollegen entwickelte Methode erlaubt erstmals einen trockenen Transfer, der die hohe Qualität des chemisch gewachsenen Graphens beibehält. Zusätzlich kann das Kupfer für die Synthese von Graphen wieder verwendet werden, was Geld und Ressourcen in der Herstellung von Graphen einspart.

RWTH Aachen / DE

Content Ad

Auf der Suche nach dem besten Signal-Rausch-Verhältnis?

Auf der Suche nach dem besten Signal-Rausch-Verhältnis?

Bringen Sie Ihre Messungen auf ein neues Level - wie weltweit bereits mehr als 1000 Labore vor Ihnen. Der MFLI Lock-In Verstärker setzt Maßstäbe in der Signalanalyse und in einem herausragenden Signal-Rausch-Verhältnis.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Photo
16.10.2025 • NachrichtForschung

Nachschub aus dem All

Die Proto-Erde bildete sich in drei Millionen Jahren, lebensnotwendige Elemente wie Wasser oder Kohlenstoffverbindungen jedoch brachte erst eine spätere planetare Kollision.

Themen