Höhere Frequenzen mit Magneten
Frequenzquellen für die Spin-Elektronik im Gigahertz-Bereich möglich.
Eine neue Entdeckung von Physikern der Martin-Luther-Universität Halle-Wittenberg könnte bestimmte Bauteile in Computern und Smartphones überflüssig machen. Dem Team ist es in einem gängigen magnetischen Material gelungen, Frequenzen ohne zusätzliche Bauteile direkt in höhere Bereiche umzuwandeln. Der Prozess der Frequenzvervielfachung ist von grundlegender Bedeutung in der modernen Elektronik.
Digitale Technologien und Geräte sind bereits heute für etwa zehn Prozent des weltweiten Stromverbrauchs verantwortlich, Tendenz stark steigend. „Es ist daher notwendig, effizientere Bauelemente für die Informationsverarbeitung zu entwickeln“, sagt Physiker Georg Woltersdorf. Typischerweise werden die für den Betrieb der Geräte notwendigen Signale im Gigahertz-Frequenzbereich durch nicht-lineare elektronische Schaltungen erzeugt. Das Forscherteam hat nun einen Weg gefunden, wie das auch ohne elektronische Bauelemente innerhalb eines magnetischen Materials möglich ist. Die Magnetisierung wird dabei durch eine Quelle im niederfrequenten Megahertz-Bereich angeregt. Diese Quelle generiert durch den neu entdeckten Effekt gezielt mehrere Frequenzkomponenten, die jeweils einem Vielfachen der Anregungsfrequenz entsprechen. Diese umfassen einen Bereich von sechs Oktaven und erreichen bis zu mehrere Gigahertz. „Das ist in etwa so, als ob man bei einem Klavier den tiefsten Ton auf der Tastatur anschlägt und dabei zusätzlich auch die entsprechenden harmonischen Töne der höheren Oktaven erklingen“, so Woltersdorf.
Erklärt wird der überraschende Effekt der Frequenzmultiplikation durch synchronisierte Schaltvorgänge der dynamischen Magnetisierung auf der Mikrometerskala. „Verschiedene Bereiche schalten dabei nicht gleichzeitig, sondern werden durch benachbarte Bereiche angestoßen, ähnlich wie beim Domino ein Stein den anderen umstößt“, erklärt Chris Körner vom Institut für Physik. Die Entdeckung könnte dabei helfen, digitale Technologien in Zukunft energieeffizienter zu machen. Sie ist auch für neue Anwendungen von Interesse.
Aktuelle Mikroelektronik nutzt die Ladung der Elektronen als Informationsträger. Ein großer Nachteil dieser Methode ist, dass das Verschieben von elektrischer Ladung Wärme freisetzt und viel Energie benötigt. Ein vielversprechender Ausweg könnte die Spin-Elektronik sein. Diese nutzt zusätzlich zur Ladung des Elektrons auch dessen magnetisches Moment und erlaubt prinzipiell eine deutliche Verbesserung der Energieeffizienz. Der neu entdeckte Effekt könnte platzsparende und effiziente Frequenzquellen für die Spin-Elektronik im Gigahertz-Bereich ermöglichen.
MLU / JOL