Hyperwürfel-Zustände entdeckt
Vielversprechende Kandidaten für die Konstruktion neuartiger Quantensensoren.
Quantenmechanische Phänomene decken sich selten mit unseren Alltagserfahrungen und scheinen oft schlicht absurd. Bereits 1935 machte Erwin Schrödinger dies in seinem berühmten Gedankenexperiment deutlich, in dem eine Katze in einer skurrilen Quantensuperposition von tot und lebendig landet. Die Katze ist dabei weder das eine noch das andere und auch nicht beides gleichzeitig, sondern in einem sensiblen neuartigen Quantenzustand, wenigstens solange niemand nachsieht. Doch Schrödinger schuf mit seiner Katze aber auch einen wichtigen Baustein für moderne Quantentechnologien von Quantencomputern bis zu extrem sensiblen Sensoren. Forscher weltweit arbeiten daran, Schrödingers Katze in Quantensystemen wie einzelnen Atomen oder Lichtteilchen nachzubilden.
„Bringt man ein Quantensystem in solch eine Superposition von zwei klassischen Zuständen, so bilden sich sensible Interferenzphänomene, welche man für Quantentechnologie nutzen kann“, sagt Martin Ringbauer vom Institut für Experimentalphysik von der Universität Innsbruck. Man kann sich dies vorstellen wie eine Überlagerung von Wasserwellen, die entsteht, wenn man zwei Steine gleichzeitig ins Wasser wirft. Schrödingers Katze ist nicht die einzige ihrer Art: 2001 wurde mit dem Kompasszustand ein erster Verwandter entdeckt. Dieser Zustand besteht aus einer Superposition von nicht zwei, sondern vier klassischen Zuständen, welche wie die Hauptrichtungen eines Kompasses angeordnet sind. Schrödingers Katze und Kompasszustände sind jedoch nur der Anfang, berichtet nun ein internationales Team von Physikern aus Österreich, Australien und dem Vereinigten Königreich. Sowohl Schrödingers Katze als auch der Kompass sind Teil einer unendlich großen Familie von Zuständen, die aus Superpositionen bestehen, deren klassische Bausteine die Ecken von multi-dimensonalen Hyperwürfeln darstellen. „Wir haben diese Hyperwürfel-Zustände fast zufällig entdeckt, als wir mit winzigen Membranen experimentierten, um Zustände für neuartige Quantensensoren zu entwickeln“, erzählt Ringbauer.
„Die Auflösung eines Sensors ist zu einem großen Teil durch dessen Skala bestimmt. Will man einen sehr genauen Maßstab erreichen, müssen die Abstände zwischen den Markierungen sehr klein sein. Versucht man jedoch diese Abstände kleiner und kleiner zu machen, stößt man früher oder später an eine quantenmechanische Grenze – das Heisenbergsche Unschärfeprinzip“, erläutert Ringbauer. Quanten-Hyperwürfel Zustände können diese Grenze umgehen, in dem sie sich Quanteninterferenz zu Nutze machen. „Am Beispiel der Steine im Wasser sieht man, dass selbst große Steine in der Überlagerung der Wellen zu feinen Mustern führen. Diese können durchaus deutlich kleiner sein als die Steine, die sie auslösen. Ähnlich ist es bei Quantenzuständen: Selbst wenn die Zustände an den Ecken der Hyperwürfel eine Mindestgröße haben, so ergeben sich dennoch immer feinere Interferenzmuster, je höher die Dimension des Hyperwürfels wird“, sagt Ringbauer. Dies macht Hyperwürfel-Zustände zu vielversprechenden Kandidaten für die Konstruktion neuartiger Quantensensoren, in denen die feinen Interferenzmuster die Rolle der Markierungen des Maßstabes übernehmen.
U. Innsbruck / JOL