22.08.2014

Im Spindelgefängnis

Bei Zellteilungen sorgen biophysikalische Eigenheiten dafür, dass wichtige Proteine nicht aus dem Zellkern diffundieren.

Damit aus einer Zelle zwei genetisch gleiche Tochterzellen entstehen können, muss sich der Zellkern teilen. Zu diesem Zweck bildet sich in der Zelle eine spindelförmige Struktur aus, an deren Enden sich jeweils ein Zentrosom befindet. Von beiden Zentrosomen gehen röhrenförmige Fasern – die so genannten Mikrotubuli – zur Mitte der Spindel aus, wo sich das Erbmaterial der Zelle befindet. Die gedachte horizontale Linie zwischen beiden Zentrosomen bezeichnet man dabei als Spindelachse. Das Erbmaterial besteht zu diesem Zeitpunkt aus zwei genetisch identischen Schwesterchromatiden. Diese werden mittels der Mikrotubuli entlang der Spindelachse in entgegengesetzte Richtungen gezogen. So ist gewährleistet, dass jede der beiden neuen Tochterzellen das gleiche Erbmaterial enthält wie die Ausgangszelle.

Abb.: Schema der Spindel vor dem Mikroskopiebild einer sich teilenden Zelle (grau). Chromatiden sind gelb-orange, Mikrotubuli grün, die Spindelachse weiß und eine der vertikalen Achsen rot dargestellt. (Bild: M. Weiss, U. Bayreuth)

Bevor die Zellteilung einsetzt, ist das Nukleoplasma – der flüssige Inhalt des Zellkerns – durch die Hülle des Zellkerns nach außen abgeschirmt. Außerhalb der Kernhülle, im Zwischenraum zwischen dem Kern und der Außenhaut der Zelle, befindet sich das Zytoplasma. Am Anfang der Zellteilung bricht die Kernhülle auf, so dass Nukleoplasma und Zytoplasma ein zusammenhängendes Fluid bilden, in dem sich die Spindel entwickelt. In dieser komplexen Flüssigkeit bewegen sich verschiedenartigste Proteine zufällig in alle Richtungen. Hierbei handelt es sich um Diffusionsbewegungen.

Die Gruppe um Matthias Weiss, der an der Universität Bayreuth einen Lehrstuhl für Experimentalphysik leitet, hat das Bewegungsverhalten von Proteinen im Bereich der Spindel erstmals genauer analysiert. Das Ergebnis: Proteine diffundieren in dem aus Nukleoplasma und Zytoplasma gebildeten Fluid nicht gleichmäßig in alle Richtungen, sondern bevorzugen Bewegungen entlang der Spindelachse und der Mikrotubuli. Hingegen scheinen sie längere Wege, die quer über die Mikrotubuli führen, zu scheuen. Während Proteine sich also innerhalb der Spindel entlang der Mikrotubuli frei bewegen können, fällt ihnen ein Ausbruch aus dem ‚Spindelgefängnis’ erheblich schwerer; denn dafür müssten sie eine Vielzahl von Mikrotubuli überschreiten. Proteine, die an organisatorischen Prozessen innerhalb der Spindel beteiligt sind, können infolge dieses Diffusionsverhaltens längere Zeit in der Spindel eingesperrt bleiben, haben aber ‚Freigang‘ in den Strukturen der Spindel.

Eine Postdoktorandin und eine Master-Studentin aus der Forschungsgruppe um Weiss haben diese Erkenntnisse in aufwändigen Experimenten mit Hilfe der Fluoreszenzkorrelations-Spektroskopie zutage gefördert. Diese hochsensitive Methode haben sie genutzt, um zu bestimmen, wie sich einzelne Moleküle von grün-fluoreszierendem Protein (GFP) im Bereich der Spindel bewegen. Die GFP-Moleküle haben einen Durchmesser von rund 1,5 Nanometern und sind daher prototypisch für die meisten Proteine der Zelle. Eine bevorzugte Diffusion entlang der Spindelachse ließ sich aber nicht nur bei diesen relativ kleinen Molekülen beobachten. Größere Partikel – etwa fluoreszierende Dextranmoleküle mit einem rund zehnfach größeren Durchmesser – verhielten sich ähnlich. Auch größere molekulare Strukturen oder sogar kleine Fragmente von Zellorganellen zeigen mithin eine Präferenz für Bewegungen entlang der Spindelachse und der Mikrotubuli.

„Die Moleküle, deren Bewegungsverhalten wir sichtbar machen konnten, repräsentieren hinsichtlich ihrer Größenordnung die Gesamtheit der Proteine, die in der Spindel oder in ihrer Umgebung diffundieren“, erklärt Weiss. „In allen Fällen handelt es sich um Makromoleküle, und sie alle sind entlang der Spindelachse viel bewegungsfreudiger als in den beiden vertikalen Richtungen, die von der Spindelachse wegführen.“

Wie ist diese experimentelle Beobachtung zu erklären? Die Mitglieder der Forschungsgruppe führen zwei Ursachen an, die aus ihrer Sicht bei der Proteindiffusion vermutlich zusammenwirken: Im Innern der Spindel bewegen sich zahlreiche Molekülkomplexe, die den Prozess der Zellteilung in Gang setzen und am Laufen halten. Die dabei umgesetzte Stoffwechsel-Energie scheint die Zellflüssigkeit entlang der Spindelachse und der Mikrotubuli zu fluidisieren und somit weniger zähflüssig zu machen. Dadurch erhalten Diffusionsbewegungen entlang der Spindelachse einen „Extra-Schub“. Bewegungen, die quer dazu in der Vertikalen verlaufen, fehlt dagegen dieses zusätzliche antreibende Moment. Das Fluid erweist sich in beiden vertikalen Richtungen als erheblich zähflüssiger.

Eine weitere Ursache liegt wahrscheinlich in der horizontalen Ausrichtung der zahlreichen Mikrotubuli, die wie Greifarme von den Zentrosomen in die Mitte der Spindel führen. Sie bilden eine Struktur, die Diffusionsbewegungen entlang der Spindelachse unterstützt, aber gegenläufige Bewegungen behindert. In ähnlicher Weise läuft Regenwasser von einem Wellblechdach leichter in Richtung der vorgegebenen Rinnen ab.

„Die Anomalie im Diffusionsverhalten ist ein geschickter Kunstgriff der Natur, der darauf hinwirkt, dass wichtige Makromoleküle nicht kurzfristig aus der Spindel herausdriften und verlorengehen“, meint Weiss. „Das Material, das für den Aufbau der Spindel und für die Entstehung genetisch gleicher Tochterzellen benötigt wird, bleibt somit über längere Zeit beisammen. Organisations- und Transportprozesse werden durch horizontale Diffusionsbewegungen unterstützt, so dass ein fehlerfreier Zellteilungsprozess viel wahrscheinlicher ist, als wenn sich der Bewegungsdrang der Proteine in alle Richtungen gleich stark entfalten würde.“

U. Bayreuth / DE

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen