Ein Wasserstoffatom ist das Zünglein an der Waage bei den Forschungen von Peter Jacobson. Der Wissenschaftler der Uni Graz hat mit Kollegen am MPI für Festkörperforschung in Stuttgart einen Weg gefunden, die magnetischen Eigenschaften von einzelnen Atomen gezielt zu beeinflussen. Wird ein Wasserstoffatom auf ein Atom eines Metalls, zum Beispiel Kobalt, übertragen, haben die dabei auftretenden Bindungskräfte Auswirkungen auf den Spin des Kobaltatoms. Indem die Forscher diese Kräfte manipulierten, konnten sie zwischen zwei verschiedenen Spin-Zuständen hin- und herschalten und damit die magnetischen Eigenschaften des Kobaltatoms steuern.
Abb.: Rastertunnelmikroskopie und Rasterkraftmikroskopie erlauben Einblicke in kleinste Strukturen. (Bild: U. Graz)
Magnetismus spielt bei vielen technologischen Anwendungen eine Rolle, etwa in Computer-Festplatten oder anderen Medien zur Datenspeicherung. Die Verkleinerung solcher Komponenten wäre maximal bis auf die Ebene einzelner Atome möglich. „Will man Magnetismus in diesem Maßstab kontrollieren, ist es wichtig zu verstehen, wie der Spin eines Atoms mit seiner Umgebung interagiert, um dieses Wissen zur gezielten Beeinflussung der magnetischen Eigenschaften nutzen zu können“, erklärt Jacobson.
Bei ihren Untersuchungen bedienten sich die Wissenschaftler der Rastertunnelmikroskopie, kurz RTM, und der Rasterkraftmikroskopie, kurz AFM für „atomic force microscopy“. Von der Metallspitze des RTM übertrugen sie ein Wasserstoffatom auf ein Kobalt-Monohydrid-Molekül. „Durch Veränderungen der Position der Spitze des RTM im Pikometer-Bereich ist es uns gelungen, zwischen zwei verschiedenen Spin-Zuständen des Kobaltatoms hin- und her zu schalten – genauer gesagt zwischen magnetischer Anisotropie und dem Kondo-Effekt“, fasst Jacobson zusammen. Beides sind wesentliche magnetische Phänomene auf der Ebene einzelner Atome. Die Möglichkeit, den Spin zu kontrollieren und damit den Magnetismus zu steuern, könnte also im Hinblick auf zukünftige Entwicklungen durchaus von Nutzen sein.
Von besonderer Bedeutung sind die Forschungsergebnisse auch deshalb, weil – erstmals in der Untersuchung magnetischer Phänomene – die RTM mit der AFM kombiniert wurde und damit Bilder von bisher unerreichter Auflösung im Nanometer-Bereich gewonnen werden konnten. „Mit der AFM lassen sich die atomaren Kräfte in dem Moment, in dem der Spin vom einen in den anderen Zustand wechselt, exakt messen“, so Jacobson. „Daraus sehen wir genau, wie sich dieser Wechsel vollzieht, wie der Reaktionsweg aussieht, wenn das Wasserstoff- mit dem Kobaltatom eine Bindung eingeht.“ Diese Arbeiten legen den Grundstein für die weitere Erforschung magnetischer Phänomene mit Hilfe der AFM.
KFU / RK