21.08.2015

Komplex koordiniertes Kollektiv

Selbstorganisation bei Aktin-Filamenten weist auf neue Möglichkeiten zur Kontrolle von Nanosystemen.

Aus vielen Bausteinen bestehende, lebende Materie hat bisweilen außergewöhnliche Fähigkeiten, sich selbst zu organisieren und kollektive Bewegungen auszuführen. Das funktioniert bei einem Vogelschwarm im großen Maßstab ähnlich wie bei sich gemeinsam bewegenden Gruppen von Bakterien oder Zellen. Physiker interessieren sich für die zugrunde liegenden theoretischen Mechanismen hinter solch geordneten Strukturen und Bewegungen. Sie wollen damit die makroskopischen Phänomene besser verstehen lernen. Christoph Weber und Erwin Frey, Inhaber des Lehrstuhls für Biologische und Statistische Physik an der LMU München, untersuchten deshalb gemeinsam mit ihren Kollegen Ryo Suzuki und Andreas Bausch von der TU München ein Modellsystem aus fadenförmigen Aktin-Molekülen. Solche Mikrofilamente sind beteiligt an der aktiven Bewegung von Zellen und an intrazellulären Transport­vorgängen. Die Filamente ließen sich im Experiment von auf einem Untergrund aufgeklebten molekularen Motoren bewegen. Die Physiker konnten so studieren, wie sich einzelne Filamente verbiegen, was passiert, wenn zwei Filamente zusammenstoßen, und unter welchen Bedingungen sich die Filamente kollektiv ausrichten.

Abb.: Interaktionen von Filamenten unter verschiedenen Orientierungen (Bild: R. Suzuki et al.)

Gemäß der bisher gängigen Theorie galt vorwiegend die Brownsche Wärmebewegung als ursächlich dafür, wie sich die dünnen Filamente verbiegen, während die Motoren sie vorwärts bewegen. „Diese Annahme ist aber falsch“, sagt Christoph Weber, der mittlerweile am Max-Planck-Institut für Physik komplexer Systeme arbeitet. „Die Brownsche Bewegung hat nur einen geringen Einfluss auf die Form der Filamente.“ Die Münchner Forscher konnten jetzt nachweisen, dass stattdessen die molekularen Motoren nicht nur die Partikel antreiben, sondern auch dafür sorgen, dass sich die Partikel biegen. „Die Filamente zeigen starke lokale Krümmungen, die einer Verteilung gehorchen, die nicht mit der Wärmebewegung erklärt werden kann“, sagt Ryo Suzuki.

Zudem konnten die Physiker zeigen, dass nicht etwa wiederholte Stöße zwischen jeweils zwei Partikeln dazu führen, dass sich die Filamente nach und nach ausrichten und dann kollektiv vorwärts bewegen. Tatsächlich scheinen gleichzeitige Interaktionen zwischen vielen Partikeln für kollektive Bewegungen verantwortlich zu sein. Filamente sind offenbar in Verbindung untereinander und wechselwirken nicht nur paarweise, sondern ständig mit vielen Partikeln. Die Forscher konnten im Experiment beobachten, wie sich abhängig von der Dichte und Länge der Filamente ein sogenannter Phasen­übergang von einer nicht ausgerichteten zu einer kollektiv bewegenden Phase ergibt. Dies ähnelt dem Kondensieren von Gas zu einer Flüssigkeit, nur mit dem Unterschied, dass sich nicht die Molekül­bewegung, sondern die Ausrichtung der Partikel ändert.

Theoretisch betrachtet bedeutet das, dass die bislang favorisierte sogenannte Gastheorie für angetriebene Partikel als Erklärung im Allgemeinen nicht ausreicht, um die Beobachtungen zu erklären. Es sieht eher so aus, als würden sich die Filamente kollektiv wie in einer Flüssigkeit bewegen. „Wir brauchen neue theoretische Konzepte, die über das gasartige Bild, wie kollektive Bewegung entsteht, hinausgehen“, sagt Erwin Frey, dessen Forschung auch von der Exzellenz­initiative NIM gefördert wird. Was auf mikroskopischer Ebene beim gemeinsamen Ausrichten physikalisch passiert, also wie die Filamente reiben oder sich austauschen, ist bislang noch nicht geklärt. Ein besseres Verständnis der Physik aktiv getriebener Systeme würde es erlauben, vollkommen neuartige Nanosysteme, die im Kollektiv agieren, zu konstruieren.

LMU / DE

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen