Kraftsensor für Mikroben
Neuer Mikropipetten-Sensor misst bis auf zehn Pikonewton genau.
Kräfte, die von einer lebenden Zelle oder einem Mikroorganismus ausgeübt werden, sind winzig und meist nicht größer als einige Nanonewton. Dennoch reichen für Zellen und Mikroben solche Kräfte aus, um an einer Oberfläche anzuhaften oder sich in Richtung der Nährstoffe zu bewegen. Wissenschaftler vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen sowie von der finnischen Aalto University in Espoo bei Helsinki stellen nun mit Mikropipetten-Kraftsensoren eine vielseitige Technik vor. Mit diesen Sensoren können Kräfte einer großen Bandbreite verschiedenster Mikroorganismen gemessen werden.
Um am Leben zu bleiben und sich auszubreiten passen sich Zellen und Mikroorganismen sehr erfolgreich an ihre Umgebungsbedingungen an. Diese Fähigkeit beruht unter anderem auf physikalischen Prinzipien und mechanischen Kräften: Zellen können sich beispielsweise an Oberflächen oder anderen Zellen anhaften, um einen Biofilm zu bilden. Dieser Biofilm schützt die Zellgemeinschaft vor Angriffen von außen. Viele Mikroorganismen können sich darüber hinaus aktiv bewegen, etwa durch Kriechbewegungen auf einer Oberfläche oder Schwimmbewegungen in einer Flüssigkeit, um beispielsweise Nährstoffquellen zu erreichen. Wollen Wissenschaftler verstehen, wie sich Mikroben bewegen oder an einer Oberfläche anhaften, müssen sie die entsprechenden mechanischen Kräfte messen können.
„Das Arbeitsprinzip der Mikropipetten-Kraftsensor-Technik ist eigentlich ganz einfach: durch das Betrachten der Auslenkung einer kalibrierten Mikropipette können die Kräfte, welche auf die Pipette wirken, direkt gemessen werden.“, sagt Matilda Backholm, Wissenschaftlerin im Fachbereich Angewandte Physik der Aalto University in Finnland. Einer der herausragenden Vorteile der Methode ist die Tatsache, dass sie für eine Fülle verschiedener biologischer Systeme angewandt werden kann, von einer einzelnen Zelle bis zu Millimeter großen Mikroorganismen. „Wir zeigen die Vielseitigkeit unserer Methode beispielhaft an zwei Modellorganismen aus der Mikrobiologie, den Fadenwurm Caenorhabditis elegans und die Mikroalge Chlamydomonas reinhardtii. Wir sind der festen Überzeugung, dass diese Technologie in Zukunft auch an vielen anderen biologischen Systemen Anwendungen finden wird“, sagt Oliver Bäumchen, Forschungsgruppenleiter am Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen.
„Mit unserer Idee, die hinter dieser Methode steckt, wollen wir die Vorteile verschiedener etablierter biophysikalischer Methoden miteinander kombinieren: Wir greifen eine lebende Zelle auf die gleiche Weise wie in der In-vitro-Fertilisation und messen die mechanischen Kräfte mit Hilfe der Auslenkung der Mikropipette, entsprechend der Messprinzipien der Rasterkraftmikroskopie, einer Standardmesstechnik in der Physik“, sagt Bäumchen. Backholm stellt einen weiteren Vorteil der Methode heraus: „Im Gegensatz zu den meisten anderen Kraftmessmethoden, messen wir die Auslenkung des Sensors mit einem modernen optischen Mikroskop. Dadurch können wir die Form und die Bewegung des Mikroorganismus genau studieren, während wir zeitgleich die Kräfte messen können.“ Während der ganzen Zeit ist die Zelle beziehungsweise der Mikroorganismus am Leben, so dass die Reaktion auf Medikamente sowie Nährstoffe, Temperatur oder andere Umweltfaktoren getestet werden kann. „Die Kraftauflösung ist wirklich bemerkenswert. Durch unsere neuesten technologischen Weiterentwicklungen ist es uns gelungen, Kräfte von bis zu zehn Pikonewton zu messen. Damit ist die Technik fast genauso gut wie ein Rasterkraftmikroskop.“, sagt Bäumchen.
Die Wissenschaftler erwarten, dass diese Technik in Zukunft auch in anderen Forschungslabors zur Anwendung kommen wird, um damit wichtige biophysikalische Fragestellungen im Hinblick auf unser Verständnis biologischer Funktionen von Zellen und Mikroben sowie der zu Grunde liegenden physikalischen Prinzipien zu beantworten. Die Physiker Backholm und Bäumchen stellen heraus, dass diese Forschungsrichtungen auch biomedizinische und biotechnologische Anwendungen mit sich bringen könnten: „Die Mikropipetten-Kraftsensor-Technik könnte dazu beitragen, Medikamente zu entwickeln um bakterielle Infektionen zu bekämpfen oder die Bildung bakterieller Biofilme auf medizinischen Implantaten zu verhindern, um nur einige mögliche Beispiele zu nennen, für welche diese Methode einen wichtigen Beitrag leisten könnte.“
MPIDS / JOL
Weitere Infos
- Originalveröffentlichung
M. Backholm & O. Bäumchen: Micropipette force sensors for in vivo force measurements on single cells and multicellular microorganisms, Nat. Prot. 14, 594 (2019); DOI: 10.1038/s41596-018-0110-x - Dept. of Applied Physics (M. Backholm), Aalto University, Espoo
- Dynamics of fluid and biological interfaces (O. Bäumchen), Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen