02.04.2024

Langperiodische Schwingungen steuern die differentielle Rotation der Sonne

Rückkopplungsmechanismus begrenzt differentielle Rotation zwischen Pol und Äquator.

Das Innere der Sonne dreht sich nicht in allen Breitengraden mit der gleichen Geschwindigkeit. Der physikalische Ursprung dieser differentiellen Rotation ist noch nicht vollständig geklärt. Ein Team von Wissenschaftlern am MPI für Sonnensystemforschung in Göttingen hat jetzt eine bahnbrechende Entdeckung gemacht: Langperiodische Sonnenschwingungen spielen eine entscheidende Rolle dabei, das Rotationsmuster der Sonne zu steuern. Wissenschaftler des MPS hatten diese Schwingungen bereits 2021 entdeckt. Sie transportieren Wärme von den etwas heißeren Polen zum etwas kühleren Äquator. Um zu ihren neuen Ergebnissen zu gelangen, werteten die Wissenschaftler Beobachtungen des Solar Dynamics Observatory der Nasa mit Hilfe modernster numerischer Simulationen des Sonneninneren aus. Sie fanden heraus, dass der Temperaturunterschied zwischen den Polen und dem Äquator etwa sieben Grad beträgt.

Abb.: Dreidimensionale Visualisierung der Schwingungen mit maximalen...
Abb.: Dreidimensionale Visualisierung der Schwingungen mit maximalen Geschwindigkeiten in hohen Breitengraden der Sonne. Schnappschuss der Stromlinien der langperiodischen Oszillationen in hohen Breiten in der Konvektionszone.
Quelle: Y. Bekki, MPS

Das differentielle Rotationsmuster der Sonne gibt Wissenschaftlern seit Jahrzehnten Rätsel auf: Während sich die Pole mit einer Periode von etwa 34 Tagen drehen, rotieren die mittleren Breiten schneller und die Äquatorregion benötigt nur etwa 24 Tage für eine volle Umdrehung. Darüber hinaus haben in den vergangenen Jahren Fortschritte in der Helioseismologie ergeben, dass dieses Rotationsprofil in der gesamten Konvektionszone nahezu konstant ist. Die Konvektionszone der Sonne erstreckt sich von einer Tiefe von etwa 200.000 Kilometern bis zur sichtbaren Sonnenoberfläche und ist Schauplatz heftiger Umwälzungen des heißen Sonnenplasmas. Diese spielen eine entscheidende Rolle für den Magnetismus und die Aktivität der Sonne.

Theoretische Modelle deuten seit Langem darauf hin, dass zwischen den Sonnenpolen und dem Äquator ein geringer Temperaturunterschied vorliegen muss. Nur so lässt sich das bekannte Rotationsmuster der Sonne aufrechterhalten. Diesen Temperaturunterschied zu messen, hat sich allerdings als äußerst schwierig erwiesen. Schließlich müssen Beobachtungen durch den Hintergrund des tiefen Sonneninneren hindurchsehen, das eine Temperatur von bis zu einer Million Grad aufweist. Wie die Forscher zeigen, ist es aber möglich, den Temperaturunterschied aus Beobachtungen der langperiodischen Schwingungen der Sonne zu ermitteln.

Bei ihrer Analyse von Beobachtungsdaten, die der Helioseismic and Magnetic Imager HMI an Bord des Solar Dynamics Observatory von 2017 bis 2021 aufgenommen hat, wandten sich die Wissenschaftler globalen Sonnenschwingungen mit langen Perioden zu, die als Wirbelbewegungen an der Sonnenoberfläche erkennbar sind. Vor drei Jahren hatten Wissenschaftler des MPS diese Trägheitsschwingungen entdeckt. Von diesen beobachteten Schwingungsmoden erwiesen sich jene als besonders einflussreich, die ihre maximalen Geschwindigkeiten von bis zu 70 Kilometer pro Stunde in hohen Breitengraden erreichen.

 Um die nichtlineare Natur dieser Schwingungen zu untersuchen, wurde eine Reihe numerischer dreidimensionaler Simulationen durchgeführt. In den Simulationen der langperiodischen Schwingungen mit maximalen Geschwindigkeiten in hohen Breiten zeigt sich, dass diese Schwingungen Wärme von den Sonnenpolen zum Äquator transportieren. Dadurch begrenzen sie den Temperaturunterschied zwischen diesen Gebieten auf weniger als sieben Grad. „Der sehr geringe Temperaturunterschied zwischen den Polen und dem Äquator steuert die Drehimpulsbilanz in der Sonne und ist damit ein wichtiger Rückkopplungsmechanismus für die globale Dynamik der Sonne", sagt Laurent Gizon vom MPS.

Mit ihren Simulationen haben die Forscher die entscheidenden Prozesse erstmals in einem vollständig dreidimensionalen Modell beschrieben. Frühere Bemühungen hatten sich auf zweidimensionale Ansätze beschränkt, die eine Symmetrie um die Rotationsachse der Sonne voraussetzen. „Der Abgleich der nichtlinearen Simulationen mit den Beobachtungen ermöglichte es uns, die Physik der langperiodischen Schwingungen und ihre Rolle bei der Steuerung der differentiellen Rotation der Sonne zu verstehen", sagt Yuto Bekki vom MPS.

Die Oszillationen mit maximalen Geschwindigkeiten in hohen Breitengraden der Sonne werden ähnlich wie außertropische Wirbelstürme auf der Erde durch ein Temperaturgefälle angetrieben. Die Physik ist ähnlich, auch wenn die Details unterschiedlich sind. „Auf der Sonne ist der Sonnenpol etwa sieben Grad heißer als der Äquator, und das reicht aus, um Strömungen von etwa 70 Kilometern pro Stunde über einen großen Teil der Sonne anzutreiben. Der Prozess ähnelt in gewisser Weise dem Antrieb von Wirbelstürmen", sagt Robert Cameron vom MPS.

Die Physik des tiefen Sonneninneren zu erforschen ist schwierig. Die aktuelle Studie ist wichtig, da sie zeigt, dass die langperiodischen Schwingungen der Sonne nicht nur nützliche Diagnoseinstrumente für das Sonneninnere sind, sondern dass sie aktiv die Prozesse in der Sonne steuern. Zukünftige Arbeiten zielen darauf ab, die Rolle dieser Schwingungen und ihr diagnostisches Potenzial besser zu verstehen.

MPS / RK

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen